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Background on Bayesian Optimization

Goal: Find global minimizer of f : X → Y ⊆ R,
(unknown, expensive to evaluate)

x⋆ = argmin
x∈X

f (x)

Algorithm 1 Bayesian Optimization (BO)

Input: objective f and acquisition α functions, surrogate modelM, initial
evidence set D(n0)

repeat
xn+1 = argmaxα(x | Dn,M) ▷ Find best candidate
yn+1 = f (xn+1) ▷ Evaluate candidate
Dn+1 = Dn ∪ {(xn+1, yn+1)} ▷ Update evidence set

until stopping condition is met
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Background on Bayesian Optimization

Surrogate Model: Gaussian Process (GP) Regression
Prior on functions f ∼ GP(mθ,Cθ)

Mean function m, Covariance function C , (Hyper)parameters θ

Train on Dn = {(xi , yi )}ni=1

(Univariate) Posterior predictive distribution N (mn(x), vn(x))

Stationary
Ground Truth
Predictive Mean
Confidence (2 SD)
Initial Observations
Acquisitions

Stationary + Quadratic Mean Nonstationary (I+X0)
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Benefits of Nonstationarity

More efficient representations via spatially-varying lengthscales

How to partition the search space? Shorter lengthscales where
objective varies rapidly, but longer lengthscales elsewhere.
→ Heterogeneous exploration

Constant Lengthscale Input-dependent Lengthscale
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Benefits of Nonstationarity

Better worst-case optimization performance via spatially-varying prior
variance

Instantaneous regret rn+1 = f (xn+1)− f (x⋆)

For popular acq functions (LCB, EI), max rn+1 ∝
√
vn+1(xn+1)

Tighter bounds lead to lower worst-case regret

Uninformative Mean Informative Mean
Ground Truth
Mean
CI (Stationary)
CI (Nonstationary)
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Benefits of Nonstationarity

No practical finite-time convergence guarantees with stationary covar
functions

Impossibility of exploring entire high-dimensional spaces.

Unless budget increases exponentially, no global reduction in
uncertainty → constant worst-case regret.

Predictive uncertainty = prior uncertainty − uncertainty explained by
observations, vn(x) = Cθ⋆(x , x)− cn(x)⊺C−1

n cn(x)
Stationary covar vn(x) = σ2

0 − cn(x)⊺C−1
n cn(x)

Observations not close enough to x → cn(x) ≈ 0, vn(x) ≈ σ2
0

Nonstationary covar functions are spatially informative

Predictive variance vn−1(xn) depends on xn even when cn−1(xn) ≈ 0

Informative models: some regions more informative → increased
efficiency if beliefs correct to some degree.
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Informative Covariance Functions

Promote exploration of regions deemed more promising according to
beliefs where the optimum might be, x0 ∼ p(x⋆) ∝ ϕ(x⋆),

ϕ(x⋆) = 1 +
1

L

∑
l≤L

(wl − 1) kl

(
dl(x⋆, x (l)

0 )
)

Set of anchor points {x (l)
0 }.

Positive weights wl .

Distance functions dl and kernels kl characterize neighborhoods.

Uninformative slab ensures optimum is included in the support
(bounded search space).

Use ϕ to induce spatially-varying prior (co)variance and lengthscales.
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Informative Covariance Functions

Spatially-varying prior covariance

CNS(xi , xj) = σ2
0(xi , xj)CS(xi , xj), σ2

0(xi , xj) = σ2
p

√
ϕ(xi )

√
ϕ(xj),

σ2
0(xi , xj) is symmetric and separable → valid covariance function,

i.e., symmetric positive-definite function.

Product of two covariance functions is a covariance function.

Intuition

Covariance functions compute cov(f (xi ), f (xj)).
Higher probability under p(x⋆) → Larger σ2

0(x , x) → + Informative
For 2 points with high probability, both values should be small and
highly correlated.
As probability decreases for one point xj , we believe f (xj) to be less
constrained, and less correlated with a small f (xi ).
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Informative Covariance Functions

Spatially-varying lengthscales

Without loss of generality, possible to rewrite as

CNS(xi , xj) = σ2
0(xi , xj)CS(hλ(xi ), hλ(xj)),

hλ is an input-warping function.

Set hλ to a nonlinear transformation that shrinks the lengthscales
locally around anchors.

Intuition: Finer detail in promising regions (expansion), coarser scale
(contraction) otherwise.
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Experiments: Main Methods

Baselines:

S: BO with GP model specified by an uninformative constant prior
mean and a stationary covariance function.

S+QM: S with an axis-aligned quadratic prior mean function.

C: BO with a GP model specified by a constant prior mean and a
cylindrical covariance function.

Transformation maps balls of radius R onto the surface of a cylinder of
height R.
Center expansion, boundary contraction (Euclidean space).
Belief that optimal values are near the center.

Proposed:

I+X0: BO with a GP model specified by a constant prior mean and
informative covariance. Single fixed anchor at the center.

I+XA: Anchor in I+X0 set to incumbent solution (adaptive greedy).

Afonso Eduardo (ANC) BO with Informative Covariance June 2022 10 / 17



Experiments: Main Methods

Baselines:

S: BO with GP model specified by an uninformative constant prior
mean and a stationary covariance function.

S+QM: S with an axis-aligned quadratic prior mean function.

C: BO with a GP model specified by a constant prior mean and a
cylindrical covariance function.

Transformation maps balls of radius R onto the surface of a cylinder of
height R.
Center expansion, boundary contraction (Euclidean space).
Belief that optimal values are near the center.

Proposed:

I+X0: BO with a GP model specified by a constant prior mean and
informative covariance. Single fixed anchor at the center.

I+XA: Anchor in I+X0 set to incumbent solution (adaptive greedy).

Afonso Eduardo (ANC) BO with Informative Covariance June 2022 10 / 17



Experiments: Main Methods

Baselines:

S: BO with GP model specified by an uninformative constant prior
mean and a stationary covariance function.

S+QM: S with an axis-aligned quadratic prior mean function.

C: BO with a GP model specified by a constant prior mean and a
cylindrical covariance function.

Transformation maps balls of radius R onto the surface of a cylinder of
height R.
Center expansion, boundary contraction (Euclidean space).
Belief that optimal values are near the center.

Proposed:

I+X0: BO with a GP model specified by a constant prior mean and
informative covariance. Single fixed anchor at the center.

I+XA: Anchor in I+X0 set to incumbent solution (adaptive greedy).

Afonso Eduardo (ANC) BO with Informative Covariance June 2022 10 / 17



Experiments: Main Methods

Baselines:

S: BO with GP model specified by an uninformative constant prior
mean and a stationary covariance function.

S+QM: S with an axis-aligned quadratic prior mean function.

C: BO with a GP model specified by a constant prior mean and a
cylindrical covariance function.

Transformation maps balls of radius R onto the surface of a cylinder of
height R.
Center expansion, boundary contraction (Euclidean space).
Belief that optimal values are near the center.

Proposed:

I+X0: BO with a GP model specified by a constant prior mean and
informative covariance. Single fixed anchor at the center.

I+XA: Anchor in I+X0 set to incumbent solution (adaptive greedy).

Afonso Eduardo (ANC) BO with Informative Covariance June 2022 10 / 17



Experiments: Rosenbrock

Characterization:

Bowl-shaped objective.

Narrow banana-shaped valleys.

Optimum relatively close to center.
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Experiments: Shifted Rosenbrock

Characterization:

Bowl-shaped objective.

Narrow banana-shaped valleys.

Optimum further away from the center.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.001.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 S50Rosenbrock
Global Minimum ([0.5 0.5])
Origin

0 20 40 60 80 100 120 140 160 180 2000.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Im

pr
ov

em
en

t

S50Rosenbrock,D20

S
S+QM
C
I+X0 (Proposed)
I+XA (Proposed)

0 20 40 60 80 100 120 140 160 180 200

S50Rosenbrock,D50

0 20 40 60 80 100 120 140 160 180 200

S50Rosenbrock,D100

Afonso Eduardo (ANC) BO with Informative Covariance June 2022 12 / 17



Experiments: Styblinski-Tang

Characterization:

Roughly bowl-shaped objective.

Center is a local maximum.

Exponentially many local modes.

Optimum relatively far from center.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.001.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 Styblinski-Tang
Global Minimum ([-0.581 -0.581])
Origin

0 20 40 60 80 100 120 140 160 180 2000.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Im

pr
ov

em
en

t

Styblinski-Tang,D20

0 20 40 60 80 100 120 140 160 180 200

Styblinski-Tang,D50

0 20 40 60 80 100 120 140 160 180 200

Styblinski-Tang,D100
S
S+QM
C
I+X0 (Proposed)
I+XA (Proposed)

Afonso Eduardo (ANC) BO with Informative Covariance June 2022 13 / 17



Experiments: Rover Trajectory

Goal: Optimize 2D trajectory of a rover.

Trajectory given by a spline, fitted to 30 2-dimensional points (60D).
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RoverT
Efficient Trajectory
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Conclusion

Analysis of the benefits of nonstationarity for BO.

Informative covariance functions for GP-based BO, leveraging
nonstationarity to express input-dependent information.

Information about the optimum induces spatially-varying prior
covariance and lengthscales → promote exploration of promising
regions.

High-dimensional Experiments

Challenge the use of stationarity and informative mean functions.
Proposed methodology can lead to significant increase in performance,
even under weak prior information (I+XA).
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Experiments: Rover Trajectory

Objective does not penalize distance (less efficient trajectories)

Rover is free to roam anywhere, as long as it satisfies target endpoints
and avoids collisions.

Example trajectories

start

end

S (acq=0, cost=90.000)
S (acq=50, cost=66.962)
S (acq=100, cost=50.592)
S (acq=150, cost=43.883)
S (acq=200, cost=38.560)

start

end

S+QM (acq=0, cost=90.000)
S+QM (acq=50, cost=90.000)
S+QM (acq=100, cost=48.690)
S+QM (acq=150, cost=41.183)
S+QM (acq=200, cost=39.241)

start

end

C (acq=0, cost=90.000)
C (acq=50, cost=88.912)
C (acq=100, cost=88.485)
C (acq=150, cost=88.316)
C (acq=200, cost=84.644)

start

end

I+X0 (acq=0, cost=90.000)
I+X0 (acq=50, cost=60.298)
I+X0 (acq=100, cost=51.344)
I+X0 (acq=150, cost=31.491)
I+X0 (acq=200, cost=31.491)

start

end

I+XA (acq=0, cost=90.000)
I+XA (acq=50, cost=52.781)
I+XA (acq=100, cost=39.914)
I+XA (acq=150, cost=27.089)
I+XA (acq=200, cost=26.934)

start

end

I+XA+F (acq=0, cost=90.000)
I+XA+F (acq=50, cost=78.327)
I+XA+F (acq=100, cost=29.854)
I+XA+F (acq=150, cost=27.741)
I+XA+F (acq=200, cost=26.915)
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