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Background on Bayesian Optimization

Goal: Find global minimizer of f : X — Y C R,
(unknown, expensive to evaluate)

x* = argmin f(x)
xeX

Algorithm 1 Bayesian Optimization (BO)

Input: objective f and acquisition « functions, surrogate model M, initial
evidence set D(™)

repeat
Xp1 = argmaxa(x | Dy, M) > Find best candidate
Ynt1 = f(Xny1) > Evaluate candidate
Dpy1 = DpnU{(Xnt1, Ynt1)} > Update evidence set

until stopping condition is met
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Background on Bayesian Optimization

Surrogate Model: Gaussian Process (GP) Regression
Prior on functions f ~ GP(mg, Cy)

@ Mean function m, Covariance function C, (Hyper)parameters 6
e Train on D, = {(x;,yi)}1—,
o (Univariate) Posterior predictive distribution N'(mj(x), va(x))
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Benefits of Nonstationarity

More efficient representations via spatially-varying lengthscales

@ How to partition the search space? Shorter lengthscales where
objective varies rapidly, but longer lengthscales elsewhere.
— Heterogeneous exploration

Constant Lengthscale Input-dependent Lengthscale
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Benefits of Nonstationarity

Better worst-case optimization performance via spatially-varying prior
variance

o Instantaneous regret r,11 = f(xp+1) — F(x*)

e For popular acq functions (LCB, El), max rp41 & v/ Vat1(Xn+1)

o Tighter bounds lead to lower worst-case regret

Uninformative Mean Informative Mean

—— Ground Truth
—— Mean

CI (Stationary)

CI (Nonstationary)

/-
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Benefits of Nonstationarity

No practical finite-time convergence guarantees with stationary covar
functions
@ Impossibility of exploring entire high-dimensional spaces.

@ Unless budget increases exponentially, no global reduction in
uncertainty — constant worst-case regret.
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Benefits of Nonstationarity

No practical finite-time convergence guarantees with stationary covar
functions
@ Impossibility of exploring entire high-dimensional spaces.
@ Unless budget increases exponentially, no global reduction in
uncertainty — constant worst-case regret.
e Predictive uncertainty = prior uncertainty — uncertainty explained by
observations, v,(x) = Cg~(x, x) — €,(x)7C; *c,(x)
o Stationary covar v,(x) = 03 — €,(x)TC,  c,(x)
o Observations not close enough to x — ¢,(x) & 0, v,(x) ~ 03
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Benefits of Nonstationarity

No practical finite-time convergence guarantees with stationary covar
functions
@ Impossibility of exploring entire high-dimensional spaces.

@ Unless budget increases exponentially, no global reduction in
uncertainty — constant worst-case regret.

e Predictive uncertainty = prior uncertainty — uncertainty explained by
observations, v,(x) = Cg~(x, x) — €,(x)7C; *c,(x)

o Stationary covar v,(x) = 03 — €,(x)TC,  c,(x)

o Observations not close enough to x — ¢,(x) & 0, v,(x) ~ 03

Nonstationary covar functions are spatially informative
@ Predictive variance v,_1(x,) depends on x, even when ¢,_1(x,) ~ 0

o Informative models: some regions more informative — increased
efficiency if beliefs correct to some degree.
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Informative Covariance Functions

Promote exploration of regions deemed more promising according to
beliefs where the optimum might be, xo ~ p(x*) o ¢(x*),

1
B(x) =1+ 7Y (w— ki (d(x"x]"))
<L
Set of anchor points {x(gl)}.
Positive weights w;.
Distance functions d; and kernels k; characterize neighborhoods.

Uninformative slab ensures optimum is included in the support
(bounded search space).

Use ¢ to induce spatially-varying prior (co)variance and lengthscales.
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Informative Covariance Functions

Spatially-varying prior covariance

Cns(xi, X)) = o5 (xi, %) Cs(xi, %)), 05(xi, %) = ooy / d(xi)\/ (X)),

e 03(x;, x;) is symmetric and separable — valid covariance function,
i.e., symmetric positive-definite function.

@ Product of two covariance functions is a covariance function.
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Informative Covariance Functions

Spatially-varying prior covariance

Cns(xi, X)) = o5 (xi, %) Cs(xi, %)), 05(xi, %) = ooy / d(xi)\/ (X)),

e 03(x;, x;) is symmetric and separable — valid covariance function,
i.e., symmetric positive-definite function.

@ Product of two covariance functions is a covariance function.
@ Intuition

o Covariance functions compute cov(f(x;), f(x;)).
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Informative Covariance Functions

Spatially-varying prior covariance

Cns(xi, X)) = 05 (xi, %) Cs(xi, x}),  0p(xis %)) = opr/ d(xi)\/d(x;),

e 03(x;, x;) is symmetric and separable — valid covariance function,
i.e., symmetric positive-definite function.

@ Product of two covariance functions is a covariance function.
@ Intuition

o Covariance functions compute cov(f(x;), f(x;)).
o Higher probability under p(x*) — Larger 03(x,x) — + Informative

e For 2 points with high probability, both values should be small and
highly correlated.
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Informative Covariance Functions

Spatially-varying prior covariance

Cns(xi, X)) = 05 (xi, %) Cs(xi, x}),  0p(xis %)) = opr/ d(xi)\/d(x;),

e 03(x;, x;) is symmetric and separable — valid covariance function,
i.e., symmetric positive-definite function.

@ Product of two covariance functions is a covariance function.
@ Intuition

o Covariance functions compute cov(f(x;), f(x;)).

o Higher probability under p(x*) — Larger 03(x,x) — + Informative

e For 2 points with high probability, both values should be small and
highly correlated.

o As probability decreases for one point x;, we believe f(x;) to be less

constrained, and less correlated with a small f(x;).
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Informative Covariance Functions

Spatially-varying lengthscales

Without loss of generality, possible to rewrite as

Cns(xi, X7) = o5(xi, %) Cs(ha(xi), ha(x7)),

@ hy is an input-warping function.
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Informative Covariance Functions

Spatially-varying lengthscales

Without loss of generality, possible to rewrite as

Cns(xi, X7) = o5(xi, %) Cs(ha(xi), ha(x7)),

@ hy is an input-warping function.
@ Set hy to a nonlinear transformation that shrinks the lengthscales
locally around anchors.

@ Intuition: Finer detail in promising regions (expansion), coarser scale
(contraction) otherwise.
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Experiments: Main Methods

Baselines:

o S: BO with GP model specified by an uninformative constant prior
mean and a stationary covariance function.

@ S+QM: S with an axis-aligned quadratic prior mean function.
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Baselines:
o S: BO with GP model specified by an uninformative constant prior
mean and a stationary covariance function.
@ S+QM: S with an axis-aligned quadratic prior mean function.

@ C: BO with a GP model specified by a constant prior mean and a
cylindrical covariance function.
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Experiments: Main Methods

Baselines:
o S: BO with GP model specified by an uninformative constant prior
mean and a stationary covariance function.
@ S+QM: S with an axis-aligned quadratic prior mean function.

@ C: BO with a GP model specified by a constant prior mean and a
cylindrical covariance function.
e Transformation maps balls of radius R onto the surface of a cylinder of
height R.
o Center expansion, boundary contraction (Euclidean space).
o Belief that optimal values are near the center.
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Experiments: Main Methods

Baselines:
@ S: BO with GP model specified by an uninformative constant prior
mean and a stationary covariance function.
@ S+QM: S with an axis-aligned quadratic prior mean function.

@ C: BO with a GP model specified by a constant prior mean and a
cylindrical covariance function.
e Transformation maps balls of radius R onto the surface of a cylinder of
height R.
o Center expansion, boundary contraction (Euclidean space).
o Belief that optimal values are near the center.

Proposed:

o I4+X0: BO with a GP model specified by a constant prior mean and
informative covariance. Single fixed anchor at the center.

o I+XA: Anchor in I+X0 set to incumbent solution (adaptive greedy).
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Experiments: Rosenbrock

Characterization:
Rosenbrock

e Global Minimum ([-0.2 -0.2])
e Origin

@ Bowl-shaped objective.
@ Narrow banana-shaped valleys.

@ Optimum relatively close to center.
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Experiments: Shifted Rosenbrock

Characterization:
1.00 S50Rosenbrock
@ Bowl-shaped objective. o Global Minimun (0.5 0.5])
0.75 e Origin

@ Narrow banana-shaped valleys. 050

@ Optimum further away from the center. °*
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Experiments: Styblinski-Tang

Characterization:

Styblinski-Tang

Roughly bowl-shaped objective.
Center is a local maximum.

Exponentially many local modes.

Optimum relatively far from center.

e Global Minimum ([-0.581 -0.581])
e Origin
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Experiments: Rover Trajectory

Goal: Optimize 2D trajectory of a rover.
e Trajectory given by a spline, fitted to 30 2-dimensional points (60D).
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Conclusion

@ Analysis of the benefits of nonstationarity for BO.
@ Informative covariance functions for GP-based BO, leveraging
nonstationarity to express input-dependent information.
o Information about the optimum induces spatially-varying prior
covariance and lengthscales — promote exploration of promising
regions.
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Conclusion

@ Analysis of the benefits of nonstationarity for BO.

@ Informative covariance functions for GP-based BO, leveraging
nonstationarity to express input-dependent information.

o Information about the optimum induces spatially-varying prior
covariance and lengthscales — promote exploration of promising
regions.

@ High-dimensional Experiments
o Challenge the use of stationarity and informative mean functions.

o Proposed methodology can lead to significant increase in performance,
even under weak prior information (I+XA).
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Experiments: Rover Trajectory

Objective does not penalize distance (less efficient trajectories)
@ Rover is free to roam anywhere, as long as it satisfies target endpoints
and avoids collisions.
Example trajectories
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