ECG-based Biometrics using a Deep Autoencoder for Feature Learning: An Empirical Study on Transferability

Afonso Eduardo, Helena Aidos and Ana Fred

Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa

Contributions

A single-channel ECG biometric system with an autoencoder as feature extractor is proposed and evaluated on data from a local hospital.

- A lower dimensional representation of heartbeat templates is learned and a superior performance is achieved.
- A transfer learning setting is explored and results

Biometric Identification System

A one-to-many template matching system whose templates are given by an encoded representation of individual ECG heartbeats. The raw signals are bandpass filtered. Heartbeat templates are built by taking a fixedlength window around detected R peaks. The mapping function is learned by the encoder submodule of the autoencoder and its hyperparameters are selected using a validation set. The parameters of the classifier (k-Nearest Neighbor) are fixed.

show practically no loss of performance, suggesting that it can be deployed in systems with offline training: small to large-scale deployments, including embedded applications.

Autoencoder

- A neural network (NN) that learns to reconstruct the inputs belonging to a given dataset \mathcal{X}_{\star} : $X = [\{x : x \in \mathcal{X}_{\star} \subset \mathcal{X}\}]^{\mathsf{I}}.$
- It consists of an encoder, $\lambda : \mathcal{X} \mapsto \mathcal{Z}$, and a decoder, $\psi: \mathcal{Z} \mapsto \mathcal{X}.$
- To update the function parameters via backpropagation, an objective function, $\mathcal{L}(X,\lambda,\psi)$ must be defined, e.g. $\mathcal{L}(X,\lambda,\psi) = ||X - \hat{X}||_F^2$, where $\hat{X} = [\{\hat{x} : \hat{x} = (\psi \circ \lambda)(x), \forall x \in \mathcal{X}_{\star}\}]^{\mathsf{T}}$ denotes the reconstructed inputs.

Regularization is required to learn useful representations [1]:

Figure 2: Template matching biometric system [2].

Results

- explicitly design a network with a bottleneck (undercomplete);
- add regularization terms to the objective function; • use techniques such as data corruption or dropout.

Figure 1: Schematic of an undercomplete autoencoder.

Figure 3: Heartbeat template.

Learning Schemes

- **B**: identity function as feature extractor, i.e. templates are not encoded.
- M1: autoencoder is trained only on the target dataset, i.e. templates from enrolled subjects.
- M2: autoencoder is trained only on leftover data, i.e. templates from unenrolled subjects. Transfer learning scenario.
- M3: autoencoder is trained on all available data, i.e. templates from enrolled and unenrolled subjects. Adds insight on how the system behaves in the presence of additional data.

Figure 4: Identification error: boxplots with annotated medians.

Figure 5: Scheme ranking (Nemenyi test [3]).

Future Research

References

- ECG as dynamical system: state-space signal processing using Bayesian filtering [4, 5].
- Data augmentation: simple translations or scaling; models capturing the ECG dynamics [4]; general generative models [6, 7].
- Different biometric systems: deep learning based (Convolutional NN, Recurrent NN); feature fusion; ensembles.

[1] Ian Goodfellow, et al., *Deep Learning*, MIT Press, 2016.

[2] Antonio Fratini, et al., Individual identification via electrocardiogram analysis, *Biomedical Engineering Online*, 14(1), 2015.

[3] Janez Demšar, Statistical Comparisons of Classifiers over Multiple Data, Journal of Machine Learning Research, 7(Jan), 2006. [4] Patrick McSharry, et al., A Dynamical Model for Generating Synthetic Electrocardiogram Signals, IEEE Transactions on Biomedical Engineering, 50(3), 2003.

[5] Reza Sameni, et al., A nonlinear Bayesian filtering framework for ECG denoising, *IEEE Transactions on Biomedical* Engineering, 54(12), 2007.

[6] Diederik Kingma, et al., Auto-Encoding Variational Bayes, in International Conference on Learning Representations (ICLR), 2014.

[7] Ian Goodfellow, et al., Generative Adversarial Nets, in Adv. Neural Information Proc. Systems (NIPS), 2014.

Acknowledgements

This work was supported by the Portuguese Foundation for Science and Technology, scholarship number SFRH/BPD/103127/2014 and grant PTDC/EEISII/7092/2014.