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1 Active Learning Strategies for Optimization and Inference

Active learning plays a key role in optimization under uncertainty. In particular, the Expected Improvement
(EI) [1] and the Upper/Lower Confidence Bound (UCB/LCB) [2, 3] enjoy wide popularity among machine learning
practitioners due to their computational simplicity. However, these two strategies are also susceptible to local
minima.

Despite being governed by a parameter that promotes exploration, careful tuning of UCB/LCB is difficult. For
instance, the theoretical rules derived by Srinivas et al. [3] and Chowdhury et al. [2], based on regret bounds,
postulate certain conditions that rarely occur in practice; e.g., that global optima of UCB/LCB can be found, the
objective function belongs to a known Reproducing Kernel Hilbert Space (RKHS), or a bound on the RKHS
norm is known. More recently, Berkenkamp et al. [4] and Bogunovic et al. [5] propose modifications to handle
unknown (hyper)parameters or model misspecification, but not without their own limitations, e.g. stationarity
or known error (ϵ-misspecification). Fundamentally, if the value of the parameter in UCB/LCB increases rapidly,
the acquisition step can become very exploratory, also compromising sample efficiency.

As for EI, it favors the point that offers the greatest expected improvement upon a threshold, typically the
value associated with the incumbent solution.1 This greedy strategy has empirically been shown to be more
efficient than UCB/LCB when properties of the objective function are unknown [e.g. 6, 2, 7]. As with UCB/LCB,
some modifications have also been proposed [see e.g. 8, 9]. Importantly, I have proposed the Collapsed Expected
Improvement (CEI, Appendix A) that chooses more informative points by design. In CEI, I target one mode
at a time and collapse them to approximate the remaining, provided that the actively sampled point is not
sufficiently informative.2 The same idea can be applied to other acquisition functions. In fact, the initial aim
is to investigate in more detail these mode-collapsed strategies, comparing them with alternatives, and possibly
to develop a more theoretical analysis.

Furthermore, the usefulness of active learning strategies extends to (likelihood-free) inference, whose goal is to
identify regions of non-negligible density and to correctly estimate regions of interest, typically those of highest
density; that is, once optima are identified, the objective is then to efficiently explore modes. Previous work has
used random perturbations [e.g. stochastic LCB 11] to explore these modes, not taking into account the amount
of information gained. The initial aim is again to investigate mode-collapsed strategies, comparing them with
posterior sampling, e.g. with MCMC [12], and possibly other more sample-efficient but costlier strategies for
LFI. For instance, strategies based on the variance in the posterior approximation [maxvar/expintvar 13] or
entropy-based strategies, such as Bayesian Active Learning by Disagreement [BALD 14, MaxMI 15] where active
samples are the points for which the parameters (of the conditional density model) under the posterior disagree
the most.

1Technically, it is a parameter that can be controlled, allowing e.g. relaxation, which I explore in CEM-EI (Appendix B).
2It can be seen as an extension of the Top-Two Expected Improvement (TTEI) proposed by Qin et al. [10], generalized to handle

continuous spaces and to select the top “arm” (mode) that meets a certain condition based on information gain. By contrast, in
TTEI, “the idea is to identify in each period the two most promising arms based on current observations, and randomize to choose
which to sample. A tuning parameter [...] controls the probability assigned to the top arm.”
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2 Search-Aware Bayesian Optimization

2.1 Motivation

Bayesian Optimization depends on the choice of surrogate models and acquisition functions. While surrogates
can heavily influence the acquisition step [e.g., 16], the decision itself requires finding the optimum of an
acquisition function over the domain or, alternatively, a trust region [e.g., 17]. The resulting optimization
problem is typically nonconvex, being a computational challenge not only in high dimensions, but possibly also
in lower-dimensional domains. For instance, despite a proven record of good empirical performance [e.g., 6, 2,
7], the Expected Improvement (EI) landscape is often multimodal and characterized by flat regions, severely
hampering the effectiveness of gradient-based optimizers.

As shown in [Figure 11 1], the nonconvex issues that affect EI3 have been known since its inception, leading
Jones et al. [1] to propose a branch-and-bound algorithm, followed by a Lipschitz global optimizer [DIRECT 18].
Despite the popularity of the latter, the curse of dimensionality limits its applicability. An alternative is then to
combine local optimization with global heuristics. In this setting, a standard practice is to adopt gradient-based
optimization with multiple restarts, where initial points are chosen from a large pool of candidates [e.g., 19,
20, 16]. Importantly, the cost of the acquisition step typically dominates, without providing guarantees that
acquisition points are global optima. As a side effect, theoretical regret bounds and convergence rates have also
limited applicability [see, e.g., Appendix A 16].4

2.2 Research Questions

Q1: Is it possible to design acquisition strategies that are more amenable to high-dimensional optimization
without compromising sample efficiency?

For this purpose, it may be useful to note that optimization can be seen as the estimation of a posterior
distribution over optima p(x⋆|Dn), where Dn is the evidence set containing previous observations {(xi, yi)}i≤n.
In fact, the problem can be cast as an expectation over a search model q⋆ = argmaxq Ex∼q[Ey∼f(x)[u(y)]],
where f is the target to be approximated by p(y|x) from a surrogate and u is a utility. The integrated utility
then becomes an acquisition function α(x). However, in BO, the search model is implicit.5

Q2: Can the acquisition cost be amortized if an explicit search model is maintained during optimization?

Perhaps the search model can be used to sample more densely from the highest density regions without having
to solve a high-dimensional optimization problem at each acquisition step.

2.3 BO with Adaptive Sampling (CEM-PI)

Given a set of desired properties Sτ = {y : y ≤ τ}, the original optimization problem, in which we can sample
y ∼ f(x), may be seen as a rare event estimation problem that is cast as an expectation over a search model,

max
x

P(Y ∈ Sτ | x) ≥ max
θ

Eqθ [P(Y ∈ Sτ | x)]. (2.1)

Then, a surrogate provides p(y|x) that approximates P(Y ∈ Sτ | x) ≈
∫
p(y|x)1y≤τdy = CDFY (x, τ).

6

In [CbAS 21], the goal is to estimate p(x | Sτ ,θ0) ∝∼ CDFY (x, τ)q(x;θ0).
7 By minimizing the (forward) KL

divergence KL(p(x | Sτ ,θ0) ∥ q(x;θ)), the objective becomes θ⋆ = argmaxθ Eq(x; θ0) [CDFY (x, τ) log q(x;θ)].
However, since CDFY (x, τ) can be vanishingly small for x ∼ qθ0

and small τ , the method8 relies on adaptive
importance sampling by iterating according to

θt+1 = argmax
θ

Eq(x; θt)

[
q(x;θ0)

q(x;θt)
CDFY (x, τt) log q(x;θ)

]
, (2.2)

3Other acquisition functions can similarly lead to nonconvex optimization problems [e.g., UCB/LCB 3].
4Another assumption that may not hold in practice is related to concentration inequalities [see, e.g., Figure 1 16].
5Technically, it is given by a point-mass distribution (Dirac delta).
6This is an acquisition function α(x; τ) = CDFY (x, τ). In fact, it is the same as the Probability of Improvement (PI) with

utility u(y) = 1y≤τ . The threshold is given by τ , not necessarily the best observed value ymin.
7Technically, CbAS performs maximization with 1− CDFY (x, τ).
8It is equivalent to the cross-entropy method [CEM 22] for optimization with performance function CDFY (x, τ).
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where the condition becomes increasingly stringent τt−1 ≥ τt ≥ ymin. This is essentially an iterative weighted
maximum likelihood method that updates parameters by sampling from q(x; θt) [Appendix S6.1. 21]. As a
result, closed-form updates are available if qθ belongs to the exponential family, thereby avoiding gradient
computation.

Importantly, CbAS has been proposed for the fixed data setting. For BO purposes, the current initial imple-
mentation runs CbAS at each new acquisition step, starting from a multivariate Gaussian qθ0 with mean given
by the incumbent solution xbest. Several issues were found during initial development. For instance, sampling
from the search model to acquire data may lead to no improvement, even in relatively low-dimensional problems
(<10). For this reason, the current strategy acquires the mean of the final search model qθ at each acquisition
step, unless it is already in the training set. Meanwhile, small importance weights q(x;θ0)/q(x;θt) may cause
early termination of CbAS, often resulting in poor performance, as shown in Figure 2.1 (all AS without suffix
-IW). Variants without these search weights (i.e., with -IW), or equivalently with qθ0 = qθt , correspond to the
update given by DbAS [Equation 12 21]. The nondecreasing thresholds τ may also need to be reset at each new
acquisition step.

0 20 40 60 80 100 120 140 160 180 2000.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Im

pr
ov

em
en

t

QBranin,D20

0 20 40 60 80 100 120 140 160 180 200

QBranin,D50

0 20 40 60 80 100 120 140 160 180 200

QBranin,D100
EI
AS
AS-IW
AS+UC
AS+T
AS-IW+UC
AS+UC+T
AS-IW+UC+T

0 20 40 60 80 100 120 140 160 180 2000.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Im

pr
ov

em
en

t

Rosenbrock,D20

0 20 40 60 80 100 120 140 160 180 200

Rosenbrock,D50

0 20 40 60 80 100 120 140 160 180 200

Rosenbrock,D100
EI
AS
AS-IW
AS+UC
AS+T
AS-IW+UC
AS+UC+T
AS-IW+UC+T

0 20 40 60 80 100 120 140 160 180 2000.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Im

pr
ov

em
en

t

Styblinski-Tang,D20

0 20 40 60 80 100 120 140 160 180 200

Styblinski-Tang,D50

0 20 40 60 80 100 120 140 160 180 200

Styblinski-Tang,D100
EI
AS
AS-IW
AS+UC
AS+T
AS-IW+UC
AS+UC+T
AS-IW+UC+T

Figure 2.1. Performance of acquisition strategies, EI vs AS (and variants), on objectives ranging from 20 to
100 dimensions [Appendix B.3 16]. The total budget is 200 acquisitions, excluding initial observations. Solid
curves and shaded regions represent the normalized improvement mean and one standard deviation over 10
trials, each with different initial conditions/observations. Solid vertical lines show the interquartile range.
The type of surrogate model is the same in all experiments [I+XA 16]. Search models in AS are multivariate
Gaussians. Variants -IW significantly outperform others, whereas unbiased estimates +UC only lead to marginal
gains and nondecreasing thresholds +T can negatively affect performance. Overall, AS requires further research
and development, as revealed by its lower improvement mean and higher variance. Abbreviations: Expected
Improvement (EI); Adaptive Sampling/CEM-PI (AS); without search Importance Weights (-IW); Unbiased
estimate of Covariance matrix (+UC); nondecreasing Threshold during optimization (+T).
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2.4 Other Strategies

Fundamentally, Adaptive Sampling (AS) computes an approximation q to the implicit posterior over optima
p(x⋆|Dn) := p(x|Sτ ,θ0).

9 If the initial search model is uniform, then this posterior is proportional to a
nonnegative acquisition function (see definition of p(x|Sτ ,θ0) and footnote 6). Naturally, the next acquisition
in standard BO is xn+1 = argmax p(x⋆|Dn) = argmaxα(x|mn, vn) for a surrogate with posterior predictive
mean mn and variance vn.

10 More broadly, it is possible to apply a monotonically increasing function g that
preserves the optima, but changes the shape of the posterior p(x⋆|Dn) ∝ g(α(x⋆|mn, vn)). This effectively
extends the strategy to any real-valued α by using a nonnegative g, as long as the normalizing constant Z
is finite. Interestingly, p(x⋆|Dn) ∝ exp(α(x⋆|mn, vn))p0(x

⋆) leads to an energy-based model,11 where the
partition function Z(θ) depends on the parameters of the surrogate model, and training data Dn if the latter
is nonparametric. It seems that any algorithm that can sample from energy-based models is applicable.

Importantly, the aim is to sample from the highest density regions of p(x⋆|Dn). For this purpose, one more
strategy is based on the sequential application of the Laplace approximation to, e.g, p(x⋆|Dn) ∝ EI(x⋆|mn, vn),
leading to a Gaussian mixture search model.12 In fact, this model can be obtained as a byproduct of an
acquisition function I developed in February 2022, referred to as the collapsed EI (Appendix A). The problem
is that we are required to optimize over multiple turns, but the cost can perhaps be amortized over subsequent
iterations, e.g., once estimated, it can later be adapted with AS and Multiple Importance Sampling [MIS 25].

9Technically, a posterior over promising points since we are not interested in sampling data that have already been observed.
10It follows the same notation as that in [Section 2.4 16].
11This formulation is also related to belief distributions [23] (and LFI [e.g., 24]), where priors are updated to posterior beliefs

through a negative loss/acquisition/performance function. More generally, there may be a tempering parameter [Section 3 23].
12Most importantly, it is a general strategy to estimate multimodal distributions without the problems generally associated with

1-turn VI (mass-covering or mode-seeking). Here, I target one mode at a time and collapse them to approximate the remaining.
The resulting mixture approximation can lead to multiple importance sampling. Being a general strategy, its significance extends
beyond BO and LFI.
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A Collapsed Expected Improvement

Expected Improvement (EI) and Lower Confidence Bound (LCB) are susceptible to local minima. There is no
intrinsic mechanism that prevents the rules from choosing points with already small predictive variances. In
LCB, this is typically addressed by increasing βn and decreasing lengthscales over time [3, 4], ensuring that
the entire domain is eventually explored. Increasing βn is functionally almost the same as increasing the prior
variance. So, a similar strategy can carry over to EI. However, if the prior variance increases carelessly, or if the
lengthscales decrease rapidly, BO becomes very exploratory before it has the chance to exploit any information
given by the posterior predictive mean. So, unconditional updates should be avoided.13

Wang et al. [26] provide a conditional rule for such update that seems reasonable: Lengthscales only decrease if
the predictive variances of successive future acquisitions are less than a certain threshold, e.g., noise variance.
The problem with this approach is that the amount of decrease that leads to mode collapse of EI is unknown,
so it may take multiple updates and evaluations before this main acquisition mode vanishes. Here, we modify
the acquisition function directly by removing this acquisition mode, and the procedure is repeated until the
predictive variance of the acquisition is larger than the threshold. To this end, we use the Laplace method,
estimating a log quadratic model centered at the location that maximizes the current acquisition function.

Collapsed EI (CEI) may be computationally more expensive than EI. Still, larger posterior predictive variances
translate into more informative acquisitions, making better use of the limited evaluation budget. As a byprod-
uct, note that repeated application of the Laplace method with mode collapse retrieves a Gaussian mixture
search model q(x) =

∑
i wiN (x;x(i),H−1(i)), with wi ∝ EI(x(i)), that approximates the implicit posterior

over promising points p(x⋆|Dn) ∝ EI(x⋆). This information about promising points can also later be fed to
informative covariance functions [16] via the shaping function ϕ that induces the nonstationary effects.

Algorithm 1 Collapsed EI (CEI)

Input: posterior predictive variance vn, threshold ϵ
Output: acquisition x(i)

x(0) = argmaxEI(x)
i = 0
CEI(i) = EI
while vn(x

(i)) ≤ ϵ do

H(i) = ∇2
x − log CEI(i)(x)|x=x(i)

CEI(i+1)(x) = CEI(i)(x)− CEI(i)(x(i)) exp
(
− 1

2 (x− x(i))⊺H(i)(x− x(i))
)

x(i+1) = argmaxCEI(i+1)(x)
i = i+ 1

end while
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Initial Observations
Acquisitions
Mean
Confidence
Acq. Fn (EI)

Stationary + Quadratic Mean Nonstationary Variance Nonstationary Lengthscale Nonstationary Variance and Lengthscale

Stationary + CEI
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Mean
Confidence
Acq. Fn (CEI)

Stationary + Quadratic Mean + CEI Nonstationary Variance + CEI Nonstationary Lengthscale + CEI Nonstationary Variance and Lengthscale + CEI

Figure A.1. A comparison of EI and CEI. In this example, CEI can solve the problem that is due to overconfident
stationary models. Overall, it leads to more informative acquisitions as it avoids locations with small predictive
variances.

13Interestingly, informative covariance functions [16] can too be of help in this case: Information from the posterior predictive
mean can be directly incorporated in the proposed covariance functions through the shaping function ϕ.
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B BO with Adaptive Sampling (CEM-EI)
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Figure B.1. Performance of acquisition strategies, EI vs CEM-EI (and variants), referred here again as AS,
on objectives ranging from 20 to 100 dimensions [Appendix B.3 16]. The total budget is 200 acquisitions,
excluding initial observations. Solid curves and shaded regions represent the normalized improvement mean
and one standard deviation, computed over 10 trials, each with different initial conditions/observations. Solid
vertical lines show the interquartile range. The type of surrogate model is the same in all experiments [I+XA 16].
Search models in AS are multivariate Gaussians. Variants -IW can significantly outperform others. Overall, AS
requires more research and development, as revealed by its lower improvement mean and in some cases higher
variance. Abbreviations: Expected Improvement (EI); Adaptive Sampling/CEM-EI (AS); without search
Importance Weights (-IW); Unbiased estimate of Covariance matrix (+UC); nondecreasing Threshold during
optimization (+T).
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