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Abstract
Deep neural networks achieve state-of-art perfor-
mance in a wide range of applications, but typi-
cally require a large amount of data. Traditional
methods mitigate the problem of small training
sets by augmenting the data using known trans-
formations. However, it is believed that plausi-
ble transformations can be learned automatically.
We analyze the problem of training deep neu-
ral network classifiers on comparatively small
data sets, exploring neural generative models as
means to learn these transformations (neural data
augmentation). In particular, we train conditional
deep convolutional variants of Generative Ad-
versarial Networks (CDCGAN) and Variational
Auto-encoders (CDCVAE) on data sets based on
CIFAR10 and MNIST. We qualitatively and quan-
titatively analyze the resulting data generation
processes, finding that quality tends to improve
as the training set size increases. Better architec-
tures and models are however required for the
generation of natural images. We then evaluate
the performance of a VGG-Net classifier with
and without data augmentation and find that neu-
ral data augmentation does not seem to be better
than traditional methods, but it is likely due to
the relatively simple architectures we consider.

1. Introduction
Deep learning has revolutionized several disciplines (Le-
Cun et al., 2015), ranging from computer vision to speech
recognition. Indeed, deep neural networks seem to ex-
cel at perception tasks, and the emergence of open-source
deep learning frameworks, such as Theano (Theano De-
velopment Team, 2016), TensorFlow (Abadi et al., 2015)
or Keras (Chollet et al., 2015), has brought the field into
the mainstream. However, in order to achieve state-of-art
performance, the architectures of these neural networks are
typically complex and a recent trend is to consider increas-
ingly deeper designs (Gu et al., 2017). This poses a number
of challenges as not only the training procedure becomes
computationally expensive, but also requires the collection
of large data sets. The former is typically solved by GPU-
accelerated computing, allowing significant speedups when
compared to standard computing. The latter is however
exceptionally difficult or, in some cases, impossible (e.g.
medical data). One possible alternative is to consider data
augmentation, where the original data set is enlarged using

new artificial observations. Traditional strategies involve
the use of transformations specified a priori, but it is be-
lieved that plausible transformations can instead be learned
from the data without relying on human intervention.

In this work, we draw inspiration from neural generative
models, specifically variants of Generative Adversarial Net-
work (GAN) (Goodfellow et al., 2014a) and Variational
Auto-encoder (VAE) (Kingma & Welling, 2013), in order
to automatically learn possible transformations and to gen-
erate synthetic observations. This approach is henceforth
referred to as neural data augmentation. Indeed, we believe
that these black-box generative models contain enough rep-
resentational power as to learn plausible transformations
while, in principle, requiring minimal assumptions from the
practitioner regarding the data. However, since the general
procedure is not limited to learning the parameters of the
generative distribution, but also its implicit and explicit
functional form (GAN and VAE respectively), their appli-
cability might be limited, especially in the low data regime.
To this end, we investigate to which extent data augmenta-
tion using variants of GANs and VAEs can be an effective
strategy, providing a qualitative and quantitative analysis of
the quality and robustness of the data generation processes.
In order to evaluate their suitability, we also compare them
to traditional methods. Our primary aim is then to measure
the consequences in terms of classification performance
(accuracy) under different data regimes. For this purpose,
we evaluate the behavior of a deep neural network classi-
fier, a simpler VGG-Net (Simonyan & Zisserman, 2014),
on increasingly smaller data sets with and without data
augmentation. Note that in previous work, we had also con-
sidered a different classifier based on capsule layers (Sabour
et al., 2017), but we do not explore this classifier further,
mostly due to computational constraints. Similarly, we had
considered as an optional objective the improvement of
neural generative models using, for instance, architectures
based on capsule layers, but, again, due to time and compu-
tational constraints we do not pursue this direction, leaving
it instead as future work.

The rest of this report is organized as follows: in Section
2, we present the data sets, followed by the specification
of the classifier and the traditional and neural data augmen-
tation strategies. In addition, we describe the method we
use to quantitatively assess the quality of the artificial data.
Section 3 provides a description of the experiments and a
detailed analysis of the results. Section 4 reviews related ap-
proaches in the literature and, finally, Section 5 summarizes
our findings, relating the outcome to the research questions
while also pointing to possible future directions.
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2. Methodology
2.1. Data sets

Focusing on image recognition, we explore data sets with
the same number of classes (10): MNIST (LeCun et al.,
1998) and CIFAR10 (Krizhevsky & Hinton, 2009). In
MNIST, each sample is a 28 × 28 gray-scale image of a
handwritten digit; whereas, in CIFAR10, each observation
is a 32 × 32 color image of a vehicle (airplane, automo-
bile, ship, truck) or an animal (bird, cat, deer, dog, frog,
horse). Both contain 10,000 images as test data, but while
the classes in the test set of CIFAR10 are balanced, on
MNIST they are only approximately so. In an attempt to
balance the training/validation sets and make MNIST and
CIFAR10 comparable with respect to the training set size,
we consider a different split. In particular, we consider strat-
ified sampling, generating training sets of size 42,500 and
using the remainder observations for validation purposes
(17,500 and 7,500 for MNIST and CIFAR10 respectively).
We achieve a perfect class balance in CIFAR10, but not in
MNIST. However, compared to the given split, this con-
stitutes an improvement. More importantly, we consider
training subsets of different sizes: we build versions with
90%, 80%, ..., 10%, 5%, 2% and 1% of the full training
set (100%), referring to these as MNIST-α (CIFAR10-α),
where α denotes a relative percentage. These versions are
generated by successive stratified sampling. For instance,
MNIST-90 is a subset of MNIST-100, MNIST-80 is a sub-
set of MNIST-90, and so forth. Ideally, experiments should
be performed over multiple random splits so that the results
are not influenced by specific splits, but we are unable to
follow this route due to computational constraints.

2.2. VGG-Net Classifier

Convolutional neural networks (CNN) have been highly
successful (Schmidhuber, 2015) and, currently, the best
performing architectures consider advanced layer designs,
including shortcut connections to allow more effective train-
ing (Gu et al., 2017). Historically, a major development
was proposed by (Simonyan & Zisserman, 2014), where
state-of-art results were achieved using a homogeneous ar-
chitecture containing small-sized filters (VGG-Net). This
aspect revealed to be particularly effective, allowing the
incorporation of more non-linearities, while reducing the
number of weights. In this work, we consider simpler
variants of the VGG-Net. The architectures have 3 con-
volutional stages with 64, 128 and 256 filters respectively.
Each block consists of two convolutional layers with 3 × 3
kernels and weights are initialized with Glorot Uniform
(Glorot & Bengio, 2010). We use Leaky ReLU and, after
each convolutional operation, we optionally apply batch
normalization (Ioffe & Szegedy, 2015). In particular, based
on previous findings, we enable batch normalization on CI-
FAR10 data, but not on MNIST. Dimensionality reduction
at each stage is carried out using max-pooling (2 × 2, stride
2). After each block, we apply dropout (Srivastava et al.,
2014) with a rate of 0.6. Finally, for classification, a single
fully-connected layer with softmax is added.

2.3. Traditional Data Augmentation

In computer vision, the use of data augmentation includes
the application of rotation, translation, blurring and other
transformations to existing images, often allowing a model
to generalize better. Traditional (manual) augmentation
techniques have been studied extensively in the context
of neural networks and their use usually leads to better
performance (Simard et al., 2003; Krizhevsky et al., 2012;
Chatfield et al., 2014). In this work, for both MNIST and
CIFAR10, we consider three possible transformations: ran-
dom rotations (ROT) uniformly chosen between −25◦ to
25◦, Gaussian blur (BLUR) injected into images with stan-
dard deviation chosen randomly between 0.25 and 2.25 and
the combination of the two previous transformations (ROT-
BLUR). Note that rotations beyond the interval chosen for
ROT can cause problems during classification on MNIST:
consider, for instance, the digits 6 and 9. In BLUR, higher
standard deviations yield images that are too blurry and
hence deemed not suitable for data augmentation.

2.4. Neural Data Augmentation

Adopting the idea of neural generative models as black
box data augmentation strategies, we explore variants of
Generative Adversarial Network (GAN) and Variational
Auto-Encoder (VAE). In particular, as we aim to augment
the existing data sets with labelled artificial data, we con-
sider conditional versions, where synthetic observations are
generated conditioned on a particular class. Additionally,
we adopt deep convolutional versions because our exper-
iments involve improving the classification performance
on images, for which convolutional architectures are more
suitable. That said, our generative models are Conditional
Deep Convolutional (CDC) variants of GAN and VAE, and
are henceforth referred to as CDCGAN and CDCVAE.

2.4.1. CDCGAN

In the adversarial framework (Goodfellow et al., 2014a), a
generative model attempts to learn the true distribution of
the data and, simultaneously, generates samples, feeding
them to an adversarial discriminative model. This model, in
turn, learns to determine whether the data being fed is fake
or real, i.e. whether the data belongs to the true distribution.
In game theory, this type of adversarial setting can be mod-
elled as a minimax game. Generative Adversarial Networks
(GAN) are a special case of this framework, where both
models are given by neural networks. The first network
corresponds to the generator G(z), which learns a mapping
from input noise z to the data space. The second network
is the discriminator D(x), a classifier that outputs the prob-
ability of incoming data x belonging to the true distribution
and not the generator. The resulting interaction is described
by the value function V(D,G) (Goodfellow et al., 2014a):

min
G

max
D

V(D,G) = Ex∼pdata(x)[log D(x)] +

Ez∼pz(z)[log(1 − D(G(z)))],
(1)
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where pdata(x) denotes the empirical data distribution de-
fined over input samples x and p(z) is the prior over input
noise variables, e.g. uniform over the interval (−1, 1). In
practice, G is trained by maximization of log(D(G(z))) be-
cause it leads to a more stable training procedure. At the
equilibrium (Nash equilibrium), G approximately models
the true data distribution and D outputs the same probability
(0.5) for real and generated data. Furthermore, conditional
generative models can be used to learn multimodal rep-
resentations, which are useful for generating descriptive
image labels and, in our case, for data augmentation using
labelled data. A conditional model is obtained if both the
generator and discriminator are conditioned on some ex-
tra information y, e.g. class label. This results in a small
change to the original objective (Mirza & Osindero, 2014):

min
G

max
D

V(D,G) = Ex∼pdata(x)[log D(x | y)] +

Ez∼pz(z)[log(1 − D(G(z | y)))].
(2)

Note that, in practice, the conditioning is implemented by
concatenating the original input with the extra information.
In terms of implementation and by definition of a GAN,
the specification of two networks is required (G and D).
For this purpose, we adopt CNNs as they lead to models
that are good at identifying the spatial structure in images.
However, due to several constraints, rather than adopting a
more sophisticated architecture as in (Radford et al., 2015)
or (He et al., 2016), we use the simpler architectures found
in InfoGAN (Chen et al., 2016a). In particular, for MNIST,
we use the architecture described in appendix C.1. of (Chen
et al., 2016a) and, for CIFAR10, we adapt the architecture
only in terms of input and output dimensions of each layer.
In fact, we take as reference the implementation found in
(hwalsuklee, 2018), using a latent representation z of size
62 for MNIST and 100 for CIFAR10.

Finally, it should be mentioned that one of the most notori-
ous problems in GANs is related to unstable training and
non-convergence. While most deep models are trained by
minimizing a cost function using gradient descent, GANs
are trained by solving a minimax game. The equilibrium
is not guaranteed as, in some cases, the two adversaries
tend to undo the progress of each other. In this context,
(Goodfellow et al., 2014b) shows that simultaneous gradi-
ent descent converges if the updates are made in function
space, but in practice, the updates are made in parameter
space. Not surprisingly, improving the training dynamics
for GANs is an active research area. Some recent contri-
butions include (Srivastava et al., 2017) proposing a GAN
with a reconstructor network and (Arjovsky et al., 2017)
proposing the use of Wasserstein-1 distance. Also refer to
(Salimans et al., 2016) for additional techniques.

2.4.2. CDCVAE

An auto-encoder network can be viewed as pair of two con-
nected networks, an encoder and a decoder. The encoder
takes an input and converts it into a more compact represen-
tation, which the decoder uses to reconstruct the original

representation. The entire network is trained as a whole
and the loss function can be for instance the mean-squared
error or the cross-entropy between the output and the in-
put. This is known as the reconstruction loss, penalizing
the network for generating outputs different from the input.
As the encoder is constrained to learn a lower-dimensional
representation, it learns to preserve the most relevant infor-
mation. However, the fundamental problem with standard
auto-encoders is that the latent space is learned from the
direct mapping of observed inputs, which for generative
purposes (generalization) is problematic.

On the other hand, Variational Auto-encoders (VAE)
(Kingma & Welling, 2013) are full probabilistic auto-
encoders that include an encoder q(z|x; f (x;θ)) and a de-
coder (also seen as generator) p(x|z; u(h; ζ), where x cor-
responds to the observation, z to the latent representation
and f and u are neural networks, with parameters θ and ζ,
whose outputs paramaterize the distributions q and p respec-
tively. The traditional VAE further assumes normally and
independently distributed latent variables, given by the prior
p(z), and a fully-factorized likelihood given by the decoder.
Similarly, the authors assume a fully-factorized distribution
for the encoder. Using these assumptions, for a N-sized
observation, the generative model (prior and probabilistic
decoder) and the probabilistic encoder can be written as:

p(x, z; u(·; ζ)) =

N∏
n=1

N(zn; 0, 1) p(xn|zn; u(zn; ζ)), (3)

q(z|x; f (x;θ)) =

N∏
n=1

q(zn|xn; f (xn;θ)), (4)

where in Equation 4 each factor is a Gaussian with mean
and variance given by the outputs of network f . Note
also that, for images (with pixel intensities between 0 and
1), p can be considered Bernoulli and, consequently, the
output of u corresponds to the probability parameter. The
parameters of the networks θ and ζ can then be learned by
minimizing the evidence lower bound (ELBO) (Kingma &
Welling, 2013), a lower bound on the marginal likelihood
of the data:

LELBO =Ex∼pdata(x)[−KL(q(z | x; f ) || p(z))] + (5)
Ez,x∼q(z|x)pdata(x)[log p(x | z; u)],

where pdata(x) is the empirical data distribution and KL
denotes the Kullback-Leibler divergence, a measure that
determines the degree of dissimilarity between distributions.
Hence, the first term forces the distribution given by the
probabilistic decoder to be close to the prior and the second
term quantifies the reconstruction loss. However, note that
we are interested in a conditional version which, as before,
consists in further conditioning the encoder and decoder on
additional information (class label) (Sohn et al., 2015). In
terms of implementation, this involves again concatenating
the original input with the extra information. Furthermore,
in order to allow a fair comparison, in our Conditional Deep
Convolutional VAE (CDCVAE), the decoder uses the same
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architecture as the generator network in CDCGAN and the
encoder uses an architecture that is similar to that of the
discriminator network in CDCGAN. Latent representation
dimensions are also the same. The fundamental difference
is that the encoder, by design, has two outputs: the first is
the unconstrained mean (linear activation) and the second
is the positive variance (softplus activation).

Finally, notice that, as in CDCGAN, we consider relatively
simple architectures and model, mostly due to computa-
tional constraints. Recent work has however proposed sev-
eral improvements over traditional VAE. For instance, the
assumption of continuous and independent latent variables
can be relaxed (Rolfe, 2016; Johnson et al., 2016) and more
expressive distributions for the encoder can be found by
normalizing flows (Rezende & Mohamed, 2015; Kingma
et al., 2016), which consist in the the successive application
of a series of invertible deterministic transformations.

2.5. Quantitative Assessment

Many advances in deep generative models have been driven
based on the qualitative assessment of images. However,
this assessment is clearly sub-optimal due to its subjec-
tive nature and because it requires human intervention.
In general, for models where the direct evaluation of the
marginal likelihood p(x) is possible, a common strategy
is to compute this quantity on held-out data and choose
the model that leads to the highest likelihood (Barratt &
Sharma, 2018). However, in recent generative models this
may not be possible: VAEs only provide a lower bound
approximation (ELBO), which tends not to be tight, and
GANs are models where the likelihood is defined implicitly.
In these circumstances, especially GANs, the most practical
approach is to compute a metric based on samples from the
model.

One possibility is given by the Inception Score (IS) (Sali-
mans et al., 2016). Summarily, this metric is determined by
applying a pre-trained neural network, specifically an Incep-
tion v3 network trained on ImageNet (Szegedy et al., 2015),
to generated images and computing statistics of its output.
The obtained densities are the conditional label distribution
p(y | x), which measures meaningful objects when entropy
is low (informative distribution), and the marginal label
distribution p(y), quantifying the ability of the generative
model to generate varied images when entropy is high (least
informative, close to uniform). The metric is then deter-
mined according to exp(ExKL(p(y | x) || p(y))). However,
IS has been shown in (Heusel et al., 2017) to suffer from
a number of pathological cases, where the images become
subjectively worse, but the score remains flat. As a result,
the authors propose the use of Fréchet Inception Distance
(FID), measuring the difference between two Gaussians:

d2((m,C), (mw,Cw)) = ‖m −mw‖
2
2 +

Tr(C +Cw − 2
√
CCW ),

(6)

where the mean and covariance (mw,Cw) are found by

computing the respective statistics over the activations of
the coding layer pool_3 of the Inception v3 network when
fed real images, and (m,C) are found by feeding synthetic
images to the network. A reference implementation can be
found in (Heusel, 2018).

It is also worth mentioning that quantitative analysis of
generative models has been a fraught topic. For instance,
(Theis et al., 2015) demonstrated that commonly used eval-
uation criteria tend to be uncorrelated when the data is
high-dimensional. Good performance using one measure
does not necessarily imply good performance using another.
As a result, this topic deserves more attention from the re-
search community and the discussion in (Barratt & Sharma,
2018) can serve as an informative guideline for future work.

3. Experiments
Before proceeding with the description and analysis of
the experiments, we note that, as in previous work, the
networks (neural generative models and classifiers) are op-
timized using Adam (Kingma & Ba, 2014). The neural
generative models use a β1 = 0.5 and the discriminator in
CDCGAN is trained with a learning rate of 0.0002. These
are the provided hyperparameters in the implementation we
take as reference (hwalsuklee, 2018). All other hyperparam-
eters, including those that are used to train the VGG-Net
classifiers, are kept as default. It is possible that these hy-
perparameters do not correspond to optimal configurations,
but due to computational and time constraints we do not
test other profiles. Furthermore, and as briefly noted in
previous work, we believe that despite its popularity, Adam
appears to have a few shortcomings, in part due to expo-
nential moving averages. Recent stochastic optimization
methods, such as AMSGrad (Reddi et al., 2018), aim to fix
these problems and, consequently, this research direction
might be worth pursuing in future work.

We begin our experiments by training both CDCGAN and
CDCVAE, followed by an analysis of the training process.
This is a fundamental step in our work as these trained
models generate the images that we use to augment the
original data sets. In particular, for each possible training
set, i.e. CIFAR-α (or MNIST-α) with α taking 13 possible
values from 1, 2, 5, 10, ...90, 100, we train CDCGAN and
CDCVAE independently for 500 epochs as this seems to
be a good compromise between training time and quality
of the generated data. Due to space constraints, we do not
include the plots of the training losses. However, it is worth
pointing that the loss of the CDCVAE, negative evidence
lower bound (ELBO), tends in most cases to converge to
local minima within 200 to 300 epochs for MNIST and
300 to 400 epochs for CIFAR10. It is not surprising that
convergence takes longer for CIFAR10 because it has more
complex data. Additionally, convergence is reached within
fewer epochs for larger training sets (epochs take longer)
and the minimum value of the ELBO becomes smaller. This
latter observation is also unsurprising since the ELBO corre-
sponds to a lower bound on the log marginal likelihood and
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Figure 1. Synthetic image samples from neural generative models, CDCGAN (left) and CDCVAE (right). The models have been trained
independently on both CIFAR10 (top) and MNIST (bottom) using multiple training sets.

larger training sets tend to exhibit more variability, some
of which the generative model is not able to explain. Other
noteworthy observations include that the optimization pro-
cess becomes noisier in the presence of less training data
and this effect becomes more pronounced as the data com-
plexity increases (CIFAR10). On the other hand, the losses
exhibited by the CDCGAN (discriminator and generator)
are less straightforward to analyze. The training process
is significantly noisier than that of CDCVAE, exhibiting
particularly wild fluctuations in the low data regime. The
training process tends to be more stable (less noisy) as the
training sets become larger, but even in these cases conver-
gence is typically not reached due to the difficulty in finding
equilibrium in the minimax GAN game (Nash equilibrium).
In fact, unlike VAEs, generative models based on GANs
are known to suffer from training stability problems and,
as previously mentioned, recent work tries to address some
of these shortcomings, using techniques such as feature
matching and minibatch features (Salimans et al., 2016),
alternative objectives that are continuous and differentiable
with respect to the parameters of the generator such as the
Wasserstein-1 distance (Arjovsky et al., 2017; Gulrajani
et al., 2017) or using an additional reconstructor network
(Srivastava et al., 2017). All these approaches have been
shown to lead to better convergence properties and, conse-
quently, generate images that are of higher quality. Indeed,
some of these modifications have been alluded in previous
work as being completely optional objectives, but due to
several constraints we have not been able to test them thor-
oughly. Instead, we leave them as a possible avenue for
future experimental work.

The next step is to generate images from the trained CDC-
GAN and CDCVAE models (2×13 trained models). Before
measuring classification performance, it is also important

to analyze the data generation process itself as this provides
additional insight into how robust these generative models
may be under different scenarios, namely different data
regimes. In particular, we generate a number of images
that is equal to the size of the corresponding training sets,
forcing the number of samples per class to be the same,
and provide a qualitative analysis of the generated samples.
Figure 1 provides some examples of the images that have
been generated using CDCGAN (left) and CDCVAE (right)
at different training regimes, specifically 10%, 30%, 50%,
80% and 100%. In both cases, the overall quality tends to
improve as the training set size increases, e.g. the images
become less noisier. This applies to both CIFAR10 and
MNIST, but admittedly this trend might be more difficult
to identify in CIFAR10 because all generated images, in-
cluding those trained on the 100% version, are not able
to replicate the global structure and perspective found in
natural images. Presumably, these defects can be solved
by adopting better model architectures, using for instance
a combination of UNet, ResNet and DenseNet as done in
(Antoniou et al., 2017), and, as previously discussed, in
the case of CDCGAN by also introducing the necessary
modifications to mitigate unstable training. Moreover, Fig-
ure 1 shows that, while CDCVAE appears to be able to
generate samples of digits that are of higher quality than
those generated by CDCGAN, the corresponding CIFAR10
images seem qualitatively worse (blurrier). This effect has
also been identified in the literature and it is known that
GAN approaches typically generate sharper images (Good-
fellow, 2016). The effect arises from the use of prior and
variational (approximate posterior) distributions that are
not sufficiently expressive, leading to models that are not
asymptotically consistent. More expressive distributions
can be found by leveraging for instance autoregressive struc-
tures (Chen et al., 2016b) and normalizing flows (Kingma
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CIFAR10 MNIST
rot blur rotblur cdcvae cdcgan rot blur rotblur cdcvae cdcgan

1 152.68 0.00 152.68 217.57 322.86 48.17 0.00 48.17 59.40 87.66
2 128.72 0.00 128.72 189.78 324.95 41.63 0.00 41.63 50.31 117.85
5 98.84 0.00 98.84 164.43 289.15 33.77 0.00 33.77 34.13 92.32
10 90.27 0.00 90.27 145.92 308.80 31.85 0.00 31.85 24.81 67.63
20 86.65 0.00 86.65 142.74 198.34 31.26 0.00 31.26 17.78 72.83
30 84.97 0.00 84.97 138.41 168.91 30.75 0.00 30.75 14.57 63.51
40 84.04 0.00 84.04 135.45 206.53 30.58 0.00 30.58 13.10 68.61
50 84.15 0.00 84.15 139.24 147.05 30.68 0.00 30.68 11.81 37.68
60 84.15 0.00 84.15 138.93 179.15 30.66 0.00 30.66 11.99 28.69
70 83.87 0.00 83.87 139.51 157.47 30.69 0.00 30.69 11.64 23.60
80 83.36 0.00 83.36 139.32 137.68 30.54 0.00 30.54 11.73 14.19
90 83.15 0.00 83.15 140.35 123.05 30.48 0.00 30.48 11.96 16.18
100 83.19 0.00 83.19 141.30 164.50 30.61 0.00 30.61 11.96 15.94

Table 1. Fréchet Inception Distance (FID) computed on images that have been generated using traditional data augmentation techniques
(ROT, BLUR and ROTBLUR) and neural data augmentation methods (CDCVAE and CDCGAN). For each training set size (%), the
neural data augmentation method that yields the lowest FID is underlined. Training set sizes below 30% do not meet the recommended
criteria of a sample size greater or equal than 10,000 and might not reflect the "true" FID.

et al., 2016), but, again, these modifications are left as fu-
ture work. Perhaps due to the blur effect, the set of images
from Figure 1 also seems to suggest that CDCVAE is able to
generate qualitatively better images in the low data regime.

As mentioned in Section 2.5, we do not limit ourselves to
a qualitative analysis. Indeed, in order to quantitatively
assess the quality of the data generation processes, we com-
pute the Fréchet Inception Distance (FID) (Heusel et al.,
2017) for each set of images. We also extend this analysis
to traditional techniques, namely those based on rotations
(ROT), Gaussian blur (BLUR) and the combined effect
of the two previous transformations (ROTBLUR). Consis-
tency between neural and traditional approaches is ensured
by applying a specific transformation with random parame-
ters (recall Section 2.3) to each image in the corresponding
training set, obtaining sets of images of equal size. All
corresponding results are shown in Table 1, but note that
as recommended in (Heusel, 2018) the minimum size to
calculate the FID should be of 10,000 samples, which ac-
cording to our experimental setup does not hold for training
set sizes below 30%. The results reveal some of the limita-
tions of applying a pre-trained neural network to generated
images and computing statistics at a particular hidden layer,
as done in FID. In particular, we observe that the FID of
images generated by BLUR is always roughly equal to 0,
suggesting that these synthetic samples should be as re-
alistic as the original images and contain a high diversity
of images with clear objects. However, since Gaussian
blur has been injected into the original images, the metric
should assign higher FID values, reflecting that the objects
are blurrier. We hypothesize that this problem is caused by
the pre-trained neural network itself, which appears to yield
to a certain degree blur-invariant features and, consequently,
the activations and the resulting statistics are roughly the
same. Another problem is that the Inception v3 network
has been pre-trained on a different data set (ImageNet) and,
as discussed in (Barratt & Sharma, 2018), this might yield
misleading results, but, again, better quantitative metrics
are currently lacking. This metric shows, nevertheless, a
good consistency property: the quality of the data gener-

ation process in traditional methods is not affected by the
training set size and the FID values should reflect this char-
acteristic by being approximately equal, which indeed holds
for the recommended training set sizes (greater or equal
than 30%). Regarding the neural generative approaches, we
observe that while the FID values on MNIST tend to be-
come increasingly smaller as the training set size increases
(especially so for CDCGAN), on CIFAR10 and specifically
for CDCVAE the values fluctuate around 140. This, in
turn, suggests that, despite the smaller FID values when
compared to CDCGAN, CDCVAE might be a poor gener-
ative model of natural images in the sense that the quality
of the generation process does not seem to improve in the
presence of more training data. CDCVAE is however more
robust to low data regimes. Finally, it is also worth pointing
that, when trained on MNIST, CDCVAE (and CDCGAN
when trained on sufficiently large data sets) appears to be
a good generative model of digits. This is in contrast to
CIFAR10, where traditional approaches (simple rotations)
achieve consistently smaller FID values.

Arguably the most important part of this work corresponds
to the analysis of the classification performance using dif-
ferent data augmentation techniques, contrasting traditional
and neural methods. For this purpose, we augment the
original training sets with synthetic images, obtaining train-
ing sets of double the size. As described in Section 2.2,
the classifiers are VGG-Nets whose optimal configurations
have been determined in previous work. In order to keep
the notation and the visualization simple, we still refer to
these augmented sets as 1, 2, 5, 10, ..., 100%. For con-
trol purposes, we further consider an additional method,
AUGORIG, where we duplicate each original image. This
allows us to focus directly on the quality of the augmenta-
tions by removing the effect of training the classifiers on
more data (each epoch takes twice as long), which surpris-
ingly is often neglected in the literature. The experimental
process then consists in independently training the opti-
mal VGG-Net classifiers for 200 epochs on each possible
augmented training set and registering the best observed val-
idation accuracy and its corresponding test accuracy. The
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CIFAR10 MNIST
orig augorig blur rot rotblur cdcvae cdcgan orig augorig blur rot rotblur cdcvae cdcgan

1 41.81 44.68 44.78 44.61 44.53 43.48 43.06 95.52 96.29 96.17 96.66 96.76 95.90 95.64
2 51.64 52.17 50.22 51.45 51.54 49.20 48.47 97.43 97.61 97.55 98.01 97.96 97.57 96.74
5 64.19 63.74 64.18 64.58 64.05 59.50 61.87 98.46 98.50 98.53 98.80 98.51 98.19 98.23
10 70.60 71.98 71.30 71.30 70.63 67.13 69.34 98.93 98.94 98.94 98.89 99.10 98.82 98.87
20 77.83 78.36 78.32 77.38 78.14 74.07 76.78 99.10 99.17 99.10 99.08 99.25 99.21 99.11
30 80.38 81.92 81.46 81.01 81.43 78.31 80.76 99.17 99.29 99.27 99.41 99.33 99.22 99.25
40 83.48 84.17 83.36 83.44 83.88 80.36 82.62 99.35 99.26 99.26 99.29 99.31 99.32 99.21
50 84.91 84.72 84.57 84.94 84.40 82.47 83.91 99.33 99.31 99.38 99.32 99.36 99.28 99.24
60 85.42 86.48 86.45 86.42 85.86 83.57 85.45 99.36 99.45 99.46 99.46 99.42 99.47 99.26
70 86.18 87.13 87.55 86.56 86.79 83.70 85.94 99.35 99.43 99.39 99.49 99.46 99.38 99.38
80 87.16 87.78 87.97 87.38 87.74 85.18 86.68 99.34 99.36 99.43 99.43 99.44 99.45 99.31
90 87.96 88.72 88.29 88.40 88.36 85.91 87.42 99.37 99.50 99.35 99.50 99.45 99.43 99.36
100 88.62 89.36 89.01 89.10 89.20 86.28 87.85 99.43 99.40 99.56 99.40 99.47 99.34 99.40

Table 2. Test accuracy (%) after training on data sets with different augmentations using optimal VGG-Net classifiers. For each training
set size (%), the method that yields the best performance is highlighted in bold. The best traditional data augmentation method (BLUR,
ROT and ROTBLUR) is dash-underlined and the best neural data augmentation (CDCVAE, CDCGAN) is underlined.

resulting learning curves corresponding to test accuracy
are shown in Figure 2. We note that all learning curves
appear to follow a logarithmic trend with accuracy increas-
ing as the training sets become larger, an observation that
is further validated by high R2 values (greater than 0.90).
However, for legibility reasons, we do not show the fit to
each curve, unlike previous work where we provided a
fit to the curves corresponding to ORIG (original training
sets without data augmentation). Surprisingly, we observe
that while data augmentation techniques seem in general to
slightly boost classification performance on MNIST, aug-
mentations on CIFAR10 do not seem to have a positive
effect, especially when compared to the control method
AUGORIG. For instance, while CDCVAE appears to be
among the best methods on MNIST, it clearly has a negative
effect on CIFAR10, where the test accuracy is consistently
lower than both the control method AUGORIG and the
baseline ORIG. This negative effect is also observed for
CDCGAN, although in some cases (e.g. CIFAR10-30)
the performance is marginally better than ORIG. CDC-
GAN tends to be the worst method on MNIST (albeit only
marginally) and it is worth recalling that the FID analy-
sis suggested that the MNIST augmentations generated by
CDCVAE are of higher quality than that of CDCGAN. Un-
fortunately, FID does not seem in general to correlate well
with classification accuracy because the natural images (CI-
FAR10) generated by CDCVAE also showed smaller FID
values, but the performance using CDCVAE augmentations
is distinctly the worst.

In addition to Figure 2, we report the test accuracy values in
Table 2 as it allows for a more thorough analysis of classifi-
cation performance. Regarding CIFAR10, we notice that
the control method AUGORIG consistently achieves one
of the best performances. This observation fundamentally
reveals that 200 epochs might not be sufficient for the clas-
sifier to learn effectively, because otherwise the observed
accuracy values in AUGORIG would be lower than that
of ORIG due to overfitting which, in turn, data augmenta-
tion strategies aim to mitigate – note that we do not show
the validation accuracy table due to space constraints, but
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Figure 2. Test accuracy using optimal VGG-Nets on CIFAR10
and MNIST with varying training set sizes (learning curves) and
for different data augmentation methods.

similar conditions are observed. Recall that, as in previous
work, the reason the classifiers are trained for 200 epochs
is mostly due to computational constraints and the need
to carry out a high number of experiments. That said, we
believe that as future work it would be interesting to repeat-
edly perform these experiments with an increased number
of epochs in order to address the aforementioned problem
and to extract statistically valid conclusions. Nevertheless,
we still believe that it is possible to compare traditional and
neural data augmentation methods using our current experi-
mental setup. Unfortunately, the neural data augmentation
methods do not seem better than traditional approaches, but,
again, it is likely to be due to the relatively simple architec-
tures that we have considered. Regarding the comparison
between CDCVAE and CDCGAN, CDCVAE augmenta-
tions yield better results for training set sizes of 1% and 2%,
suggesting that CDCVAE is indeed more robust to low data
regimes. In general, however, CDCGAN shows compara-
tively better results on CIFAR10 and the largest difference
2.71% occurs when the training size is 20%, decreasing to
around 1.5% as the training set size increases (apart from
moderate fluctuations). On MNIST and excluding sizes 5%,
10%, 30% and 100%, CDCVAE shows marginally better
results, with the largest difference being of 0.83% when
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the training set size is 2%, but in general the difference is
less than 0.3%. Finally, and as a side note, it is interesting
to observe that combining transformations (ROTBLUR)
does not necessarily yield the best results among traditional
methods.

4. Related Work
Deep neural networks typically require a large amount of
data in order to train them successfully. However, in many
realistic scenarios only a limited amount of data is available.
In these cases, deep neural networks usually overfit, gen-
eralizing poorly on new data. To mitigate this effect, tech-
niques such as `1-, `2-regularization, dropout (Srivastava
et al., 2014) or batch normalization (Ioffe & Szegedy, 2015)
have been developed. Indeed, many of these procedures
(and variants) are actively used in recent neural network ar-
chitectures (Schmidhuber, 2015; Gu et al., 2017), but, when
operating in a low data regime, these methods may not be
able to mitigate overfitting to a sufficient degree, since the
flexibility of the network may still be high. In this regime,
the combination of deep neural networks with Bayesian the-
ory has shown promising results (Gal & Ghahramani, 2015).
Transfer learning schemes (Yosinski et al., 2014) appear
to be equally relevant, where the network is, for instance,
trained on a large-scale data set with a possibly different
task and then fine-tuned on the (small-scale) target data
set. It is also worth mentioning that some researchers have
dedicated their efforts to the collection of large-scale data
sets. Traditional collection of labeled data sets has become
impracticable because it often involves human intervention.
One approach has been to adopt crowdsourcing services
that allow large-scale annotation (Russakovsky et al., 2015),
but a set of new problems arises and it does not remove
humans from the loop. Others have considered the use of
external data from online search engines (Xie et al., 2014).

An alternative approach is to consider data augmentation,
where the data set is enlarged by new synthetic observations.
For this purpose, traditional methods use a combination of
transformations that are specified a priori, which for im-
age data includes rotations, translations and additive noise
(Krizhevsky et al., 2012). More recent advances posit that
data augmentation strategies can be automatically learned.
In (Hauberg et al., 2016), the authors propose the random
generation of diffeomorphisms on a per-class basis by learn-
ing the parameters of class-specific generative models and
proceed to show the benefits of this approach in terms of
classification performance when compared to traditional
schemes. On the other hand, inspired by the development
of deep neural generative models, such as Generative Ad-
versarial Network (GAN) (Goodfellow et al., 2014a), the
authors in (Antoniou et al., 2017) propose a GAN vari-
ant that is able to learn plausible transformations and can
generalize such transformations to unseen classes, since
the generation process is itself class-agnostic. Note that in
this work we also draw inspiration from neural generative
models, but we explore different models and challenges,
providing an analysis of the quality of the data generation

processes and a direct comparison between neural and tra-
ditional data augmentation strategies.

5. Conclusions
In this report, we have analyzed the problem of training
deep neural network classifiers on comparatively small data
sets, exploring the idea of using neural generative models
as a means to automatically learn plausible transformations
from data and to augment the original data sets with arti-
ficial observations (neural data augmentation). This is in
stark contrast to traditional data augmentation, where these
transformations are specified a priori.

To this end, we have identified image recognition as be-
ing an appropriate task and have built base data sets with
training sets of varying size from CIFAR10 and MNIST.
We have then considered neural data augmentation based
on conditional deep convolutional variants of popular neu-
ral generative models, namely CDCGAN and CDCVAE.
We have qualitatively analyzed the resulting data genera-
tion processes and found that, unsurprisingly, the overall
quality tends to improve as the training set size increases.
This trend also applied to the more complex CIFAR10 data
set, but the generated data lacked the global structure and
perspective found in natural images. Presumably, better ar-
chitectures, based for instance on ResNet (He et al., 2016),
can solve these defects, but these modifications are left as
future work. Other possible modifications include feature
matching and minibatch features (Salimans et al., 2016) or
the use of Wasserstein-1 distance (Gulrajani et al., 2017)
to mitigate the unstable training found in CDCGAN. Sim-
ilarly, while CDCVAE seemed to generate qualitatively
better images of digits than CDCGAN, natural images were
blurrier. Supposedly, more expressive priors and approxi-
mate posteriors can mitigate this problem (Kingma et al.,
2016). Nevertheless, CDCVAE seemed to generate better
images in the low data regime. We have also analyzed the
generated images quantitatively and FID suggested that,
when compared to traditional approaches, both CDCVAE
and CDCGAN were poor generative models of natural im-
ages. However, FID suffers from fundamental flaws, mostly
because statistics are computed from the hidden layers of
a network pre-trained on a different data set (ImageNet).
Better approaches seem non-existent which leads us to be-
lieve that quantitative assessment of synthetic data deserves
more attention. Finally, we have analyzed classification
performance (accuracy) using different data augmentations.
In all learning curves, accuracy increased as the training
set became larger. Unfortunately, neural data augmenta-
tion did not seem better than traditional methods, but it is
likely to be due to the relatively simple architectures. When
compared to CDCGAN, CDCVAE yielded better results
on MNIST and in the low data regime, but was generally
worse on CIFAR10. Surprisingly, while data augmentation
seemed to have a positive effect on MNIST, the same did
not occur on CIFAR10. It would however be interesting to
repeat the experiments with an increased number of epochs
as to observe overfitting in the control method.
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