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Abstract
Deep learning is currently the driving force in a
wide range of applications. However, deep neu-
ral networks often require a large amount of data.
Traditional approaches mitigate the problem of
small training sets by augmenting the data using
a series of known transformations. Recent ad-
vances in unsupervised learning have proposed
the use of neural networks as powerful black-
box generative models. We aim to investigate to
which extent data augmentation based on neural
generative models can be an effective strategy
and whether combining these models with tra-
ditional approaches can further improve classifi-
cation performance. For this purpose, we start
by evaluating the behavior of deep neural net-
work classifiers on image recognition for training
sets of varying size. In particular, we evaluate
the performance of two classifiers, VGG-Net and
CapsNet, on data sets that have been built based
on MNIST and CIFAR10. We observe that as
the training set becomes smaller, the accuracy
decreases, especially on CIFAR10 which poses a
more difficult image recognition task.

1. Introduction
The field of deep learning has gained a massive amount
of attention among machine learning researchers and prac-
titioners alike (LeCun et al., 2015). Indeed, deep neural
networks seem to excel at perception tasks and, as a re-
sult, have revolutionized several disciplines (Schmidhuber,
2015), ranging from computer vision and natural language
processing to speech recognition and time series analysis.
However, in order to achieve such state-of-art performances,
their architectures are typically complex and a recent trend
is to consider increasingly deeper designs (Gu et al., 2017).
This naturally poses a number of challenges as not only
the training procedure becomes computationally difficult
and expensive, but also requires the collection of large-
scale data sets. Traditional collection of labeled data sets
is thus rapidly becoming impracticable because it often in-
volves human intervention. Some researchers have adopted
crowdsourcing services that allow large-scale annotation
(Russakovsky et al., 2015), but this approach raises new
problems and does not remove humans from the loop. Oth-
ers have considered the use of external data from online
search engines (Xie et al., 2014) or even transfer learning
schemes (Yosinski et al., 2014), where for instance the

network is trained on a large-scale data set with a possi-
bly different task and then fine-tuned on the (small-scale)
target data set. In the small data setting, Bayesian neu-
ral networks have also shown promising results (Gal &
Ghahramani, 2015).

An alternative approach is to consider data augmentation,
where the data set is artificially enlarged by new synthe-
sized observations. For this purpose, traditional methods
use a combination of known transformations, which for im-
age data includes rotations, translations and additive noise
(Krizhevsky et al., 2012); whereas for audio it involves
for instance time stretching and pitch shifting (Salamon &
Bello, 2017). Many of these augmentation schemes have
been shown to be of critical importance in deep learning,
but are clearly sub-optimal in the sense that they often re-
quire human intervention and possibly extensive domain
knowledge. Therefore, these schemes constitute feature
engineering, albeit in a different guise. Not surprisingly, re-
cent advances posit that data augmentation strategies can be
automatically learned. In (Hauberg et al., 2016), the authors
propose the random generation of diffeomorphisms on a
per-class basis by learning the parameters of class-specific
generative models and proceed to show the benefits of this
approach in terms of classification performance when com-
pared to traditional schemes. On the other hand, inspired by
the development of deep (neural) generative models, such
as Generative Adversarial Network (GAN) (Goodfellow
et al., 2014), the authors in (Antoniou et al., 2017) propose
a GAN variant that is again able to learn plausible transfor-
mations and can generalize such transformations to unseen
classes since the generation process is itself class-agnostic.

In this work, we also draw inspiration from neural gen-
erative models, specifically GAN and Variational Auto-
encoder (VAE) (Kingma & Welling, 2013), in order to
generate synthetic observations from the data. This ap-
proach will henceforth be referred as neural data augmen-
tation. Indeed, we believe that these black-box generative
models contain enough representational power as to learn
plausible transformations while, in principle, requiring min-
imal assumptions from the practitioner regarding the data.
However, since the procedure is not limited to learning
the parameters of the generative distribution, but also its
implicit and explicit functional form (GAN and VAE re-
spectively), their applicability might be limited, especially
so when the training data size is exceedingly small. As a
result, our work is most related to (Antoniou et al., 2017),
but we do not explore the same models and challenges.
In particular, we are interested in investigating to which
extent data augmentation using GANs and VAEs can be
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an effective strategy and whether combining this approach
with traditional schemes can be beneficial. The rest of this
report is organized as follows: in Section 2, we discuss our
objectives in more detail and, in Section 3, we describe the
task and data sets to be explored. Section 4 provides a de-
scription of the methods used to generate our set of baseline
results and these experiments are presented in Section 5.
Finally, we provide interim conclusions in Section 6 and
point to future plans in Section 7.

2. Objectives
As previously mentioned, our primary aim is to explore
under which circumstances neural data augmentation is
suitable. Thus, we are interested in measuring how clas-
sification performance varies under different data regimes
and whether neural data augmentation can improve these
performances. For this purpose, we start by evaluating the
behavior of two distinct deep neural network classifiers on
increasingly smaller data sets without data augmentation.
One is a convolutional neural network (CNN) whose ar-
chitecture is based on homogeneous convolutional layers
and has been proven to yield good results (Simonyan &
Zisserman, 2014). The other classifier is a relatively recent
development that tries to address some of the inherent flaws
in CNNs by extending them with capsule layers (Sabour
et al., 2017). The authors claim that the resulting architec-
ture is better able to represent data and should in principle
require less training observations. Since we are particu-
larly interested in the small data regime, this development
can perhaps be key in the design of more efficient models,
including neural generative models.

In a future phase, we delve into data augmentation strate-
gies, aiming to address our primary research question by
comparing the results with those obtained during the first
phase. We consider neural data augmentation based on both
conditional GAN and VAE (Mirza & Osindero, 2014; Sohn
et al., 2015) and we will analyze these models in terms
of robustness to different data regimes (consistency) as
well as their ability to improve classification performance.
Similarly, we might investigate the relationship between
classification performance (accuracy) and the quality of
the synthetic data, measured for instance by the Inception
score metric (Salimans et al., 2016) or the Fréchet Incep-
tion distance (Heusel et al., 2017) – we are aware of their
limitations, but provably better alternatives seem to be lack-
ing (Barratt & Sharma, 2018). In addition, a particularly
important aspect is the comparison between traditional and
neural data augmentation and whether combining the two
approaches can further boost accuracy. A thorough analysis
might be difficult to accomplish due to time and computa-
tional constraints, but we believe that a minimal setup is
feasible. Finally, a completely optional objective is related
to the improvement of neural generative models, namely
conditional GAN and VAE. For instance, we might investi-
gate whether architectures based on capsules help improve
the quality of the data being generated and further analyze
their consequence in terms of classification performance.
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Figure 1. Distribution of classes in MNIST.

3. Data set and task
To evaluate whether neural data augmentation is beneficial,
we focus on the task of image recognition. We explore two
data sets of different complexity, but with the same number
of classes (10): MNIST (LeCun et al., 1998) and CIFAR10
(Krizhevsky & Hinton, 2009). In MNIST, each sample is
a 28 × 28 pixel gray-scale image of a handwritten digit;
whereas, in CIFAR10 each observation corresponds to a
32 × 32 pixel color image of vehicles (airplane, automo-
bile, ship, truck) and animals (bird, cat, deer, dog, frog,
horse). Both data sets contain 10,000 images as test data,
but while the number of classes in the test set of CIFAR10
is completely balanced, on MNIST it is only approximately
so. Additionally, in an attempt to balance the number of
classes in the training/validation sets and make MNIST and
CIFAR10 comparable with respect to the size of the train-
ing set, we have considered a split that is different from the
one that has been provided. In particular, for each data set,
we have considered a stratified sampling approach which
generates training sets of size 42,500, using the remainder
observations for validation purposes (17,500 and 7,500 for
MNIST and CIFAR10 respectively). Using this procedure,
we were able to achieve a perfect class balance in CIFAR10,
but not in MNIST. However, compared to the previous split,
this constitutes an improvement (see Figure 1).

More importantly, since we are interested in the evaluation
of classifiers (accuracy) under different data regimes, we
consider training subsets of different sizes. In particular,
we consider versions with 90%, 80%, ..., 10%, 5%, 2% and
1% of the full training set (100%) – we henceforth refer to
each of these as MNIST-α (CIFAR10-α), where α denotes
a given relative percentage. These versions are generated
by successive stratified sampling. For instance, MNIST-90
is a subset of MNIST-100, MNIST-80 is a subset of MNIST-
90, and so forth. Note that ideally experiments should be
performed over multiple random splits so that the reported
results are not influenced by a specific set of splits, but due
to computational constraints we are unable to follow this
route. Finally, at some point in our experiments, we have
also considered a cropped version of CIFAR10, where each
32 × 32 image has been randomly cropped to 24 × 24. This
modified version is referred as RCCIFAR10.
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4. Methodology
In this section, we provide a specification of the two classi-
fiers. However, due to space constraints, we are unable to
provide descriptions and analyses as comprehensive as we
would like. Instead, we point the reader to relevant litera-
ture for complementary information. For a similar reason,
we do not describe generative models. These models will
be explained in our final report.

4.1. VGG-Net

CNNs have been highly successful (Schmidhuber, 2015)
and unsurprisingly there has been a constant effort to build
upon the architecture suggested in (Krizhevsky et al., 2012).
Currently, the best performing architectures consider more
advanced layer designs, including the use of different fil-
ter sizes to capture visual patterns at multiple scales as
well as shortcut connections that allow effective training
of deeper networks (Gu et al., 2017). Historically, a major
development was proposed by (Simonyan & Zisserman,
2014), where state-of-art results were achieved using a
homogeneous architecture containing small-sized filters
(VGG-Net). This aspect revealed to be particularly effec-
tive as it allowed the incorporation of more non-linearities,
while reducing the number of weights, when compared to
networks with larger receptive fields.

In this work, due to several constraints, we examine simpler
variants of the VGG-Net. The architectures have 3 con-
volutional stages with 64, 128 and 256 filters respectively.
Each block consists of two convolutional layers with 3 × 3
kernels and weights are initialized with the Glorot Uniform
scheme (Glorot & Bengio, 2010). We only consider the
use of Leaky ReLU because, in the previous coursework,
we found that this activation function can lead to good per-
forming CNNs – a more detailed evaluation is presented
in (Xu et al., 2015). After each convolutional operation,
we optionally apply batch normalization (Ioffe & Szegedy,
2015). Dimensionality reduction at each stage is carried
out using convolutions with stride 2 or, alternatively, max-
pooling (2 × 2, stride 2), in which case convolutions with
stride 1 are used instead. After each block, we allow the
possibility of dropout (Srivastava et al., 2014). Finally, a
single fully-connected layer with softmax is added.

4.2. Capsule Network

It is postulated that effective computer vision systems must
be able to translate knowledge across space. Typical CNNs
achieve this by relying on shared feature detectors and
max-pooling. The latter operation is known to provide
translational invariance, albeit in a rudimentary fashion. In-
deed, CNNs seem to be inherently flawed as they struggle
at modeling objects from different viewpoints due to lack
of information regarding pose, requiring in turn a signifi-
cant amount of data. In (Sabour et al., 2017), the authors
investigate capsule layers which try to overcome these short-
comings by directly encoding viewpoint invariance in trans-
formation matrices. In addition, a dynamic routing between

Layer Shape
MNIST

Shape
CIFAR10

Image 28 × 28 × 1 32 × 32 × 3

ReLU Conv1
Conv. layer with 9 × 9 kernel,
256 channels, stride 1 and no
padding

20 × 20 × 256 24 × 24 × 256

PrimaryCaps
Conv. capsule layer with 32
8D capsules, 9 × 9 kernel,
stride 2 and no padding

32 × 6 × 6 × 8 32 × 8 × 8 × 8

DigitCaps
Fully-connected capsule layer
with 16D capsule per class
(output vector v j)

10 × 16 10 × 16

ReLU FC1 Fully-connected with ReLU 512 512
ReLU FC2 Fully-connected with ReLU 1024 1024
Sigmoid FC Fully-connected with sigmoid 784 3072

Table 1. Capsule network (CapsNet) architecture. The second
section corresponds to the structure of the optional decoder, a fully-
connected network that reconstructs an image from the DigitCaps
representation.

capsule layers is also proposed, where capsules at a lower
layer actively select the capsule in the layer above that is
better able to handle such information. The authors believe
this leads to a more faithful characterization of the human
vision system, constituting a more effective approach.

A capsule corresponds to a group of neurons that captures
not only the likelihood, but also the various properties of a
specific entity in an image. In particular, each component of
the output vector v j of capsule j encodes a given property,
while its magnitude yields the existence probability of such
entity. The non-linearity applied to the its total input vector
s j ensures that the magnitude of v j is between 0 and 1:

v j =
‖s j‖

2

1 + ‖s j‖
2

s j

‖s j‖
. (1)

For each capsule j, the output ui of capsule i in the previous
layer is transformed using the transformation matrix Wi j

to produce the prediction vector û j|i. Excluding the first
capsule layer, the total input s j is given by a weighted sum
of the prediction vectors û j|i:

s j =
∑

i

ci j û j|i, û j|i = Wi j ui, (2)

where ci j are the coefficients determined by the dynamic
routing procedure. First, a similarity score bi j is computed,
consisting of a sum of a prior coupling probability with
the scalar product between the prediction vector û j|i and
the resulting output vector v j. The vector of coupling co-
efficients ci is then found by the application of softmax to
vector bi and subsequently refined – the authors suggest
3 iterations. Refer to (Sabour et al., 2017) for additional
details and (Hinton et al., 2018) for an alternative routing
process.

Furthermore, in order to train the network weights, the au-
thors propose a new loss function. In particular, a separate
margin loss Lc for each top-level capsule c, also referred
as DigitCaps (the authors perform digit identification on
MNIST), is devised:

Lc = Tc max(0, m+ − ‖vc‖)2 +

λ (1 − Tc) max(0, ‖vc‖ − m−)2, (3)
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Figure 2. Accuracy on CIFAR10 validation set using different VGG-Net configurations. Full training set is used: CIFAR10-100.
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Figure 3. Accuracy on MNIST validation set using different VGG-
Net configurations. Full training set is used: MNIST-100. Batch
normalization led to unstable behavior during training.

where Tc = 1 if class c is present (0 otherwise), m+ = 0.9,
m− = 0.1 and λ (default 0.5) tries to avoid scaling down the
activity (output) vectors during initial learning. The total
loss is the sum of all Lc. A reconstruction loss, measuring
the discrepancy in terms of sum of square differences be-
tween the reconstructed and original images, is also added
to the total loss with a scaling factor of 0.0005. This en-
ables the network to capture other critical properties of the
image.

Regarding the capsule network (CapsNet) architecture, we
follow the same as proposed in (Sabour et al., 2017), where
a single convolutional layer precedes two capsule layers
(PrimaryCaps and DigitCaps) and the decoder takes the out-
puts from the DigitCaps layer and applies 2 fully-connected
layers with ReLU activations, followed by a single fully-
connected layer with sigmoid activation. This is summa-
rized in Table 1. Note that several implementations avail-
able online perform classification on the simpler MNIST
data set. For our experiments, we adopt a TensorFlow im-
plementation for MNIST (Liao, 2018) and extend it to a
more general case, including the ability to handle images
from CIFAR10. Several other modifications are required
so as to fit within our experimentation framework. Finally,
it is also worth pointing that an alternative implementation
is provided by one of the authors in (Sabour, 2018). This
version considers the use of an ensemble for classification
on CIFAR10, which naturally leads to better performance,
but is computationally more expensive.

5. Experiments
Before proceeding with the analysis of our results, we note
that our networks are optimized using Adam with default
parameters (Kingma & Ba, 2014). This choice is mainly
due to its popularity, since it has been recently shown that
it can lead to abnormal behavior due in part to exponential
moving averages. This has led the authors in (Reddi et al.,
2018) to propose AMSGrad. Note that abnormal behavior
has also been observed in our previous work. However,
stochastic optimization methods are not the focus of this
work and, as such, alternative approaches are unlikely to be
tested due to computational constraints.

In the first set of experiments, we determine which VGG-
Net configuration produces good results in terms of ac-
curacy. For this purpose, we could employ a Bayesian
optimization scheme (Snoek et al., 2012), but we decide
not to follow this route because our primary focus is not
in obtaining the best classification performance possible
– again, we are interested in the relative gain that neural
data augmentation might yield. Hence, we train multiple
configurations of VGG-Net for 200 epochs, restricting the
configuration space to different dropout rates (0 to 0.9 with
steps of 0.1), the possibility of having batch normalization
and a dimensionality reduction method that, as described in
Section 4, is either based on convolutions with stride 2 or
max-pooling. Figures 2 and 3 show the performance curves
of the different configurations on CIFAR10 and MNIST re-
spectively. Note that, for MNIST, the curves corresponding
to batch normalization have not been included because in
our experiments this led to unstable behavior during train-
ing, specifically this behavior became more noticeable after
training for 50 epochs. For both data sets, we observe that
a dropout rate of 0.6 consistently leads to one of the best
performances, regardless of which dimensionality reduc-
tion method is being used or whether batch normalization
is enabled (CIFAR10). Max-pooling also reveals to be
advantageous for both data sets. Given our restricted con-
figuration space, the optimal VGG-Net for CIFAR10 has a
dropout rate of 0.6, max-pooling and batch normalization,
with the best validation accuracy being 88.8% (epoch 195).
The optimal VGG-Net for MNIST has a similar configura-
tion (batch normalization disabled), achieving a validation
accuracy of 99.4% (epoch 169). It is also worth mentioning
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Figure 4. Validation and test accuracy using optimal VGG-Nets
on CIFAR10 and MNIST with varying training set sizes (learning
curves). Logarithmic curves have been fitted to test accuracy.
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Figure 5. Validation accuracy on CIFAR10 and MNIST using Cap-
sNet with different number of routing iterations (full training sets).

that the higher accuracy and faster convergence on MNIST
is due to the complexity of the task, which is significantly
easier when compared to CIFAR10.

Having determined the optimal VGG-Net configuration for
both data sets, the next set of experiments involved training
the classifier on subsets of the full training data for 200
epochs. As described in Section 3, for CIFAR10, this pro-
cess corresponds to training on all subsets from CIFAR10-
90 to CIFAR10-1, operating in similar fashion for MNIST.
Due to space constraints we are unable to show the corre-
sponding performance curves. Instead, Figure 4 provides
a summary of these experiments. In particular, for each
subset, we register the best observed validation accuracy
and its corresponding test accuracy, yielding a simplified
learning curve. There are at least two noteworthy observa-
tions. First, the classifier exhibits consistent behavior since,
for all subsets, the validation accuracy and the resulting test
accuracy are not too dissimilar: they do not differ by more
than 1% on CIFAR10 and 0.7% on MNIST. Second, both
curves appear to follow approximately a logarithmic trend-
line, especially so for CIFAR10 where we observe a R2 of
0.980 compared to 0.911 for MNIST. Surprisingly, the test
accuracy of the classifier on MNIST is always higher than
93.8%, unlike CIFAR10 where the worse performance is
41.8%. This is again an evidence that the task posed by
MNIST is significantly easier than that of CIFAR10. In both
data sets, we observe a sharper decrease in performance for
training set sizes below 20%.

In the next set of experiments, we turn our attention to the
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Figure 6. Validation and test accuracy using CapsNet (routing 1)
on CIFAR10 and MNIST with varying training set sizes (learning
curves). Logarithmic curves have been fitted to test accuracy.

capsule network (CapsNet) classifier. In particular, we start
by testing its behavior with respect to the number of routing
iterations. For this purpose, we train the classifier with
its default architecture on CIFAR10 and MNIST, varying
the routing iterations from 1 to 3. From Figure 5, we ob-
serve that the increase in computational complexity due to
a higher number of routing iterations does not seem to be
advantageous. For instance, on CIFAR10, which is the data
set that has yield the most dissimilar performance curves,
the best validation accuracy does indeed occur when the
number is 3 (58.7%, epoch 21), but the difference in per-
formance compared to 1 routing iteration (58.6%, epoch
24) is negligible. The worse performance occurs when
this number is 2, but it would be unwise to conclude that
this holds in general based only on this set of experiments.
Fundamentally, in order to extract any statistically signifi-
cant result more experimentation would be required, which
given the time constraints was not possible. A particular
important observation is not however related to the number
of iterations, but instead to the apparently bad performance
of CapsNet on the CIFAR10 data set. In an attempt to im-
prove its performance, we set a number of pilot experiments
where we consider different regularization coefficients for
the reconstruction loss and, as suggested in (Sabour et al.,
2017), a cropped version of the data set (RCCIFAR10).
Nevertheless, none of these modifications seem to boost
the performance to a level that is comparable to that of
VGG-Net. We also briefly consider increasing the number
of capsules and their dimensions, but this quickly leads to
models that either take too long to train or are too large.
For instance, doubling these numbers yields a model whose
parameters do not seem to fit in 3 GPUs. It might however
be possible to write code optimized for multiple GPUs so
as to avoid these problems. Given the limited time and
resources, we have not been able to test them reliably. As a
result, we reluctantly adopt the default architecture with 1
routing iteration in the subsequent experiments. For com-
plementary studies on the empirical evaluation of CapsNet,
we refer the reader to (Sabour et al., 2017; Xi et al., 2017).

In our final set of experiments, we proceed similarly as
when testing the VGG-Net. In particular, we train the Cap-
sNet classifier on subsets of the full training data for 200
epochs. Again, due to space constraints we only provide a
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summary of these experiments: for each subset, we register
the best observed validation accuracy and its correspond-
ing test accuracy. Figure 6 depicts the learning curves of
CapsNet on both CIFAR10 and MNIST. For consistency
purposes, we fit logarithmic curves to the empirical curve
(test accuracy), obtaining a R2 of 0.977 and 0.919 on CI-
FAR10 and MNIST respectively. We observe again that as
the training set becomes smaller, the accuracy decreases
and that this decrease is sharper for training set sizes be-
low 20%. This decline is also more evident on CIFAR10
because it poses a more difficult image recognition task.
Perhaps surprisingly, CapsNet exhibits the same consistent
behavior as VGG-Net, with validation and test accuracy
not differing by more than 1% on CIFAR10 and 0.7% on
MNIST. However, the performance of this particular Cap-
sNet architecture appears to be worse than VGG-Net on
both data sets. In particular, while VGG-Net achieves a
maximum test accuracy of 88.6% and 99.5% on CIFAR10
and MNIST, CapsNet tops at around 59.0% and 99.2%
respectively. Admittedly, this difference on MNIST is negli-
gible and in order to extract a statistically significant result
more experimentation would be required. On the other
hand, CapsNet appears to scale worse when varying the
size of the training set, bottoming out at roughly 90.9% on
MNIST compared to 93.8% using VGG-Net. Finally, this
particular CapsNet is clearly not suitable for image recog-
nition on CIFAR10, mainly due to the existence of diverse
backgrounds and, as discussed in (Sabour et al., 2017), the
need to explain all components in an image.

6. Interim conclusions
In this report, we started by introducing several approaches
whose main objective is to mitigate the negative impact of
training complex deep neural networks on comparatively
small data sets, i.e. networks whose number of parame-
ters exceeds the number of training observations. While
some approaches consider the use of external data, transfer
learning schemes and Bayesian versions of standard neural
networks, in this project we will focus on data augmenta-
tion strategies. Traditional data augmentation relies on a
series of known transformations, but it is hypothesized that
these transformations can be learned from data. For this
purpose, we consider black-box neural generative models,
referring to this approach as neural data augmentation.

During this first phase, we have identified image recogni-
tion as being an appropriate task and have built base data
sets with training sets of varying size from MNIST and
CIFAR10. We have considered two neural network clas-
sifiers: one based on relatively mature ideas (VGG-Net)
and another that combines these ideas with novel concepts
(CapsNet). We then evaluated their behavior without adopt-
ing any data augmentation strategy – this constitutes our set
of baseline results and it will be used to determine whether
neural data augmentation can improve classification perfor-
mance. As expected, we have observed that as the training
set becomes smaller, the accuracy decreases, especially on
CIFAR10 which poses a more difficult recognition task.

Furthermore, both classifiers perform similarly on MNIST,
with VGG-Net being at a slight advantage. On CIFAR10
however CapsNet are markedly worse which is due to the
existence of complex backgrounds and the need to explain
all entities in an image. We hypothesize that devising a
method that can mask the background before feeding im-
ages to CapsNet can significantly improve performance.
Another possible approach is to increase the number of
capsules and their dimensions, effectively boosting the ex-
pressive power of the network.

7. Plan
The first phase of our work mainly focused on finding
optimal configurations for our baseline classifiers and eval-
uating their performance on several data sets by varying
the corresponding training set sizes. This in turn allows us
to simulate different data regimes. In the next phase, we
expand this analysis by focusing on data augmentation as
a strategy to improve classification performance. At this
point, we would like to highlight that, given the superior per-
formance of VGG-Net over the more recent CapsNet, we
are unlikely to consider the latter as our primary classifier.
However, capsule networks constitute an active research
topic, and we have suggested some ideas that might yield
promising results. Consequently, we might revisit these
networks in the future, but only after completing our main
objectives.

The next milestone is to have working implementations of
generative models, particularly conditional GANs (Mirza
& Osindero, 2014) and conditional VAEs (Kingma et al.,
2014; Sohn et al., 2015). Conditional generative models
will allow us to augment the data sets with labeled syn-
thetic observations. In this context, we might also introduce
modifications so as to improve their performance, using
for instance the ideas suggested in (Makhzani et al., 2015;
Salimans et al., 2016; Srivastava et al., 2017). After a pre-
liminary evaluation, we plan to extend the code provided
in (Kristiadi, 2018), adapting it to fit within our experimen-
tation framework. Since these implementations focus on
MNIST, additional work will involve tuning the models for
CIFAR10. More importantly, we will setup a data pipeline
that gathers the output from the generative models and feeds
it to the classifiers as training data. Using this system and
proceeding in a manner that is similar to that presented
in this report, we are able to answer our primary research
question by examining to which extent neural data augmen-
tation is an effective strategy. In particular, we will analyze
the generative models in terms of robustness to different
data regimes as well as their ability to improve classifica-
tion performance. At the same time, we will compare and
extend this approach with traditional data augmentation
strategies, using rotated, translated and noisy images. We
are aware that a thorough investigation might involve a
significant amount of work, but we believe that a minimal
setup is certainly feasible. Optionally, we might also ex-
plore the relationship between visually meaningful images
and classification performance.
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