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Abstract
Deep learning has shifted the paradigm for build-
ing machine learning systems. Instead of careful
feature engineering, the practitioner focuses on
network design and selection. It is well known
that network topology has a significant impact
on the performance of recognition systems, but
aspects such as activation functions, number of
layers, learning rules and regularization methods
should also be taken into account. The purpose
of this study is fourfold. First, we conduct ex-
periments on the task of handwritten digit and
letter recognition using fully-connected networks,
exploring the interplay between different activa-
tion functions and number of layers, initialization
schemes and regularization. We expand this anal-
ysis to different learning rules; and, subsequently,
to batch normalization. Finally, we investigate ad-
ditional topologies by considering convolutional
networks. We find that while network topology
is important, we should not downplay the value
of fine-tuned networks.

1. Introduction
Machine learning algorithms have become ubiquitous, pow-
ering not only web search engines, but also many consumer
products (LeCun et al., 2015). Traditional machine learning
systems require extensive domain knowledge and careful
engineering as to find suitable features that can be fed to
the next learning module (Goodfellow et al., 2016). Deep
Learning has revolutionized this process by allowing the
machine learning researcher and practitioner to focus in-
stead on network design and selection. Deep neural net-
works are comprised of simple nodes that are often arranged
in a particular topology such that it reflects the prior belief
of the modeler on how the data should be perceived. For
instance, in fully-connected feedforward neural networks,
each node, after receiving information from a previous
layer, propagates it forward to every node in the following
layer; whereas, in a convolutional neural network, nodes
are only connected to local patches of the previous layer.
The latter is known to be a more faithful characterization
of the visual cortex and therefore is able to better identify
spatial structure. At each successive layer, deep learning
methods are able to automatically learn more abstract rep-
resentations of the input data and, while the topology of the
network is certainly a crucial factor, there are other design
aspects that the modeler should also take into account.

Expanding on previous work (s1740192, 2017), this study
focuses on the integrated task of handwritten digit and letter
recognition. In particular, we are interested in measuring
the impact that not only different activation functions have
on learning such task, but also the interplay between these
and learning rules, dropout (Srivastava et al., 2014), batch
normalization (Ioffe & Szegedy, 2015) and convolutional
neural networks. For this purpose, in Section 2, we first
test fully-connected networks where, in addition to differ-
ent activations, we explore several architectures and relate
these findings to our previous work. Subsequently, we ex-
pand this analysis by considering the use of dropout. In
Section 3, we present advanced gradient-based stochastic
optimizers and assess their performance by comparing with
the standard Stochastic Gradient Descent (SGD) algorithm.
Building on these previous experiments, in Section 4, we
explain the concept of batch normalization and investigate
its impact; whereas, in Section 5, we turn our attention to
topologies beyond fully-connected feedforward networks,
i.e. we briefly explain the idea behind convolutional neural
networks and analyze their performance.

All results are assessed with respect to accuracy and, when
relevant, we also consider the cross entropy loss. Unlike
our previous work, where we used the Modified National
Institute of Standards and Technology (MNIST) dataset, we
now examine the Extended MNIST (EMNIST) Balanced
dataset (Cohen et al., 2017). In this dataset, each sample
is a 28 × 28 pixel grayscale image of a handwritten digit
or letter. Despite the total number of labels being 62 (10
digits, 26 lower case letters and 26 upper case letters), we
only consider a reduced set of 47 labels by merging the
upper- and lower-case labels for the following letters: C,
I, J, K, L, M, O, P, S, U, V, W, X, Y and Z. The size of
our training, validation and test sets is 100, 000, 15, 800
and 15, 800 respectively. In all the previously mentioned
sections, the reported performances correspond to the first
two parts. In Section 6, we however report the results on
the test set using a fully-connected deep neural network and
a convolutional network that have shown good accuracy
and generalization capacity on the validation set.

2. Baseline systems
Before proceeding with this analysis, we note that all net-
works are trained via backpropagation using Stochastic Gra-
dient Descent (SGD) with a learning rate α = 0.006 (based
on our previous work) and a batch size of 100 for a total of
100 epochs. We consider architectures that range from 2
to 10 hidden layers, using 100 units per hidden layer. We
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Figure 1. Cross entropy loss and accuracy on the validation set of non-regularized fully-connected networks with different activation
functions, initialization schemes and number of hidden layers. Values observed after training for 100 epochs.

also test different activation functions: ReLU (Glorot et al.,
2011), LReLU (Maas et al., 2013), ELU (Clevert et al.,
2015) and SELU (Klambauer et al., 2017). Additionally,
we consider several initialization schemes: FanInNormal,
FanInUniform, GlorotNormal, GlorotUniform (Glorot &
Bengio, 2010) and HeFanInNormal (He et al., 2015). All
these schemes draw samples from distributions with zero
mean, but different variances according to the number of
incoming and outgoing connections for a particular layer.
Due to space constraints we are unable to provide a more
detailed specification. Instead, we refer the reader to our
previous work (s1740192, 2017).

A summary of our results can be found in Figure 1. For legi-
bility reasons, we do not show the performance curves over
time. Instead, we analyze a bar chart that shows the valida-
tion error and accuracy after training for 100 epochs. Note
that that one limitation of this plot is that we are unable to
show which configuration showed the fastest convergence
(without overfitting), but since we are not performing early
stopping this is not as problematic. If we were to perform
early stopping, perhaps a better criterion would be to com-
pare the points at which the cross entropy loss is minimum.
Indeed, unlike the previous assignment, we are now able to
use early stopping, but, for simplicity reasons, we choose
not to adopt any such rule. For instance, using stochastic
regularization, the training process can become significantly
noisy. In these circumstances, adopting a greedy approach
is likely to lead to suboptimal results – a difficulty that is
exacerbated for small datasets (see (Prechelt, 1998) for an
early discussion, and e.g. (Mahsereci et al., 2017) for more
recent developments). That said, if we were to adopt a par-
ticular early stopping rule, it would be wise to first compare
different approaches.

In terms of depth, it can be seen that classifiers with 2
hidden layers are unable to learn effectively because, when
compared to architectures of 4 hidden layers, the error is

higher and the accuracy is noticeably lower – a clear sign of
underfitting. Networks with 8 or more hidden layers appear
to be overfitting (for ReLU and LReLU, it starts when
this number increases beyond 4). Consequently, a good
compromise between generalizability, accuracy and model
complexity can be obtained if we choose networks with 6
hidden layers. Throughout this study, we will however also
test networks with 10 hidden layers, so that we are able to
hypothesize on the effects of regularization and optimizers
on networks of increasing depth.

Regarding initialization strategies, a more delicate analysis
is required. Although not shown in the figure, initializ-
ing the weights with an increased variance, as is done in
HeFanInNormal, allows the network to learn faster during
the first epochs. Since we are not applying any regular-
ization, it also begins to overfit sooner, and naturally this
effect becomes more severe for increasingly complex mod-
els. As a result, its generalization capacity degrades over
time (more so than others) and, at epoch 100, it is consid-
erably worse than the rest. For instance, we can observe
differences that can go up to roughly 1%, 1.5% and 2% in
accuracy for networks of depth 6, 8 and 10 respectively.
This effect is not as pronounced for ReLU partly because
HeFanInNormal has been specifically designed for such
activations. Therefore, as the figure suggests, HeFanInNor-
mal without regularization can lead to suboptimal behavior,
but this does not mean that it cannot possibly be an effective
scheme when coupled with such techniques. In what fol-
lows, we test a widely used regularization method (dropout),
but, due to time constraints, we are unable to test it with
different initialization schemes. Instead of HeFanInNormal,
we decide to choose an initialization scheme that is more
stable. As the performance curves would have shown, it
is difficult to state confidently which initialization strategy
(if any) is likely to lead to the best performance. We have
mentioned the importance of sensitivity analysis and this
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Figure 2. Absolute difference in accuracy between training and validation (top) and accuracy on the validation set (bottom) of regularized
fully-connected networks with 100 hidden units. Different levels of dropout, activation functions and number of hidden layers are tested.

continues to hold true for this work. Due to the volume of
tests we need to carry out for the following sections and the
additional tests that this would have entailed, we reluctantly
decide not to follow our own advice and pursue a more
pragmatic approach. Based on the results, we observe that,
for ELU and SELU networks of 6 hidden layers, FanInNor-
mal reaches the lowest error, while being among the top in
terms of accuracy. For this reason, and in addition to being
the method recommended by (Klambauer et al., 2017), we
only consider FanInNormal in all subsequent experiments.

While all the activation functions exhibit similar error and
accuracy values for networks with 2 hidden layers (approx-
imately 0.55 and 82.5%), their differences become more
apparent with increasing depth. A noteworthy exception
are ReLU and LReLU networks, whose behavior remain
similar throughout – a fact that we also have observed in
our previous work. In particular, the difference in accuracy
between ELU and ReLU (and LReLU) is about 0.75%, 1%,
2% and 2.5% for networks of depth 4, 6, 8 and 10 respec-
tively. Similarly, the difference in accuracy between ELU
and SELU is approximately 0.5%, 1%, 1.5%, 1.25%. The
former set of results are reassuring because we reported
similar behavior in our previous work; the latter, however,
are to a certain degree contradictory – we observed that
SELU was less susceptible to overfitting, but for this task,
this seems to no longer be the case. This leads us to believe
that we are either in the presence of spurious events or this
relationship is task-dependent. In order to assess this matter
further, we need to perform additional tests.

We now investigate the effect of (stochastic) regularization.
In particular, we consider dropout, a method that tries to
solve the problem of overfitting from a different perspective
than that of L1/L2 regularization. Summarily, the idea is to
randomly disable units during training, effectively learning
an ensemble of models. For a more detailed description, we

refer the reader to (Srivastava et al., 2014). We begin our
set of experiments by considering networks whose number
of hidden units is fixed (100) and we test fractions that
range from 0 (no dropout) to 0.5 with steps of 0.1. From
Figure 2, we observe that as the fraction of units dropped
increases, the overall accuracy decreases. This is not sur-
prising because by dropping with a given probability r, we
are training networks whose effective size is nl · (1 − r),
where nl denotes the number of units at layer l. In addi-
tion, since we are also applying dropout to visible units, the
process is equivalent to training an ensemble of classifiers
where each chooses different inputs. When the number of
epochs is 100 and r > 0.1, the fact that we are training
ensembles cannot outweigh the reduction in effective size
and as a result the accuracy becomes worse. Another unsur-
prising aspect is that we are now able to train significantly
more robust models, as is shown by the curves correspond-
ing to the absolute difference in accuracy between training
and validation. In order to effectively apply dropout, we
therefore need to increase our learning rate (each unit is
being updated less frequently), increase the number of units
(adjust effective size) and increase the number of epochs
(ensemble training is more complex). Before proceeding, a
brief note on activation functions. We observe that SELU
networks are able to learn faster when the effective size of
the network is too small, but they do not offer any advan-
tage over ELU networks otherwise. The accuracy values
for the pairs (r = 0.0, r = 0.1) are (82.8%, 81.1%), (84.6%,
83.0%), (83.8%, 83.0%) for networks with 6 hidden layers
using ReLU, ELU and SELU respectively. These values are
not better for networks with 10 hidden layers, but the learn-
ing curves are informative – e.g. the differences between
ReLU, ELU and SELU become more pronounced.

In the next set of experiments, we choose r = 0.5, in-
crease the number of hidden units to 200 and the num-
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Figure 3. Absolute difference in accuracy between training and
validation (top) and accuracy on validation (bottom) of regularized
fully-connected networks with 6 hidden layers, 200 hidden units
and r = 0.5. Different learning rates for SGD are tested.

ber of epochs to 300. We test different learning rates:
α ∈ {0.006, 0.01, 0.1}. From Figure 3, we observe that
increasing the learning rate is indeed crucial, even more so
in ReLU networks. For these learning rates, 0.1 is clearly
the ideal value and, in this case, ELU shows the best per-
formance (81.1%) compared to SELU (79.3%) or ReLU
(77.3%). We note however that it would have been inter-
esting to test higher rates, but due to time constraints we
were unable to do so. It also becomes more clear now that
SELU is able to learn faster during the first epochs and that
it appears to be a general statement. This is perhaps unsur-
prising because compared to ELU there are multiplicative
factors greater than 1, which can be equivalent to training
with a higher learning rate. However, given enough train-
ing time, it appears to come at a cost in terms of accuracy
and we believe (Klambauer et al., 2017) do not test this
effect thoroughly. A higher "effective" learning rate can
indeed lead to worse solutions, but we are not yet certain
whether this is the case. Fundamentally, additional tests are
required.

We now evaluate ELU and SELU networks with 200, 400,
600 and 1000 hidden units which is equivalent to effective
sizes of 100, 200, 300 and 500 (r = 0.5). We also increase
the number of epochs to 500 to reflect the fact that we are
effectively training more complex ensembles. Note that
training a network of 1000 hidden units for 500 epochs
takes us two full days and, for this reason, we were un-
able to train larger networks. From Figure 4, we observe
that the most tangible boost in performance occurs when
we increase the number of hidden units from 200 to 400
(roughly from 81% to 85%), but successive increases are
reflected in more accurate systems. Despite training these
networks for 500 epochs, we are still able to maintain a
reasonable generalization capacity. Indeed, if we compare
these absolute differences in accuracy with that of a non-
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Figure 4. Absolute difference in accuracy between training and
validation (top) and validation accuracy (bottom) of regularized
fully-connected networks with a learning rate of 0.1 (SGD) and
r = 0.5. Different number of hidden units are tested.

regularized network, we see a two- to threefold increase for
the latter. In addition, SELU is able to achieve 86.7% on
the validation set, whereas for ELU we observe a value of
87.7%.

3. Learning rules
We have noted the need for higher learning rates (SGD)
such that regularized networks using dropout can learn effi-
ciently. In this section, we analyze more advanced gradient-
based stochastic optimizers. In particular, we investigate if
there are more efficient ways to learn without necessarily
increasing the learning rate as this can also lead to poor
solutions. In SGD, each parameter vector θ is updated
according to the following rule:

θt = θt−1 − α · ∇θ ft(θt−1), (1)

where θt denotes a parameter vector at time t, α is the learn-
ing rate and ∇θ ft(θt−1) corresponds to the gradient of the
cost function at time t w.r.t. θ. RMSProp (Tieleman & Hin-
ton, 2012) expands on this update by scaling the gradients
according to an exponential moving average (EMA) of its
magnitude. This scaling has a positive impact on learning
because it allows separate adaptive rates: the learning rate
is set manually, but it is multiplied by a local factor that is
estimated based on the EMA of the square of the gradients
and can vary substantially for different parameters. By tak-
ing the EMA, it also includes information from adjacent
minibatches, resulting in a more stable rule. The update
corresponds to

vt = β2 · vt−1 + (1 − β2) ·
(
∇θ ft(θt−1)

)2
, (2)

θt = θt−1 − α · ∇θ ft(θt−1)/
(√
vt + ε

)
, (3)

where β2 is the weight of the EMA (0.9 by default), vt

is the estimate of the magnitude of the uncentered (raw)
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Figure 5. Accuracy (validation) of non-regularized fully-connected networks with 100 hidden units. Different learning rules are tested:
Adam (β1 = 0.9, β2 = 0.999), RMSProp (β2 = 0.999) and SGD. The learning rates are 0.001 (Adam, RMSProp, SGD) and 0.006 (SGD).

second moment of the gradient, often initialized at zero,
and ε is a small positive scalar to prevent division by zero
(e.g. 10−8). Note that the we have included ε for numerical
stability reasons. The operators 2 and / denote scalar or
elementwise square and division, depending on the context.

More recently, another optimizer has been proposed by
(Kingma & Ba, 2014). The authors argue that rules us-
ing EMAs, including RMSProp, suffer from biases due to
zero initialization – this leads to biased estimators that are
particularly problematic during the first epochs and when
the weights of EMAs are close to one. In order to solve
this, the authors then propose bias-corrected estimates. The
resulting algorithm (Adam) is as follows:

mt = β1 ·mt−1 + (1 − β1) · ∇θ ft(θt−1), (4)
m̂t = mt/

(
1 − βt

1
)
, (5)

vt = β2 · vt−1 + (1 − β2) ·
(
∇θ ft(θt−1)

)2
, (6)

v̂t = vt/
(
1 − βt

2
)
, (7)

θt = θt−1 − α · m̂t/
( √
v̂t + ε

)
, (8)

where β1 is the weight of the EMA estimating the expected
value of the gradient over the last minibatches (also known
as momentum) and m̂t and v̂t are the bias-corrected es-
timates. Both m and v are initialized at zero. Note that
momentum is not an unique feature of Adam: there are
many alternatives with such option, including SGD and RM-
SProp with momentum. The authors recommend α = 0.001,
β1 = 0.9 and β2 = 0.999.

In the remainder of this section, we evaluate these learning
rules. Since we are interested in testing these for different
hyperparameters (α, β1, β2) we have not run these sets of
experiments on the best network we have found so far as it
would have taken more computing power than we currently
have. Instead, we explore the same configurations of non-
regularized networks. It would have been interesting how-
ever to also take into account dropout since their authors
claim that Adam performs significantly better than SGD
in cases where the gradients are sparse. This would for in-
stance occur when dropping out visible units with high r (as
done before). In addition, we consider α ∈ {0.001, 0.006},
β1 ∈ {0.9, 0.8, 0.7}, β2 ∈ {0.999, 0.95, 0.9, 0.8}. Due to
space constrains and for legibility reasons, we only show
the best configurations of β1 and β2, which turned out to be
the recommended by (Kingma & Ba, 2014) – this includes
β2 in RMSProp. A learning rate of 0.006 also revealed

to be too high for both Adam and RMSProp which is not
surprising because, since we are scaling the gradient by its
magnitude, updates that would otherwise be small, become
bigger (in addition to momentum for Adam). Therefore,
we expect the optimal learning rate to be lower than that of
SGD. From Figure 5, we observe that Adam is particularly
effective for ReLU networks and that, despite α being lower,
both Adam and RMSProp allow networks to learn faster
than SGD with α = 0.006. At epoch 100, the accuracy
of systems using Adam and RMSProp can be lower than
that of SGD, but this is due to overfitting (mitigated by e.g.
dropout). We believe a more representative measure of the
overall learning process is the mean of the accuracy values
discounted by the epoch as Table 1 shows. According to this
measure, Adam emerges as the best gradient-based stochas-
tic optimizer and, for this reason, we use this algorithm in
all subsequent experiments (unless stated otherwise).

4. Batch normalization
So far, we investigated different learning rules as to acceler-
ate the learning process which, as seen in Section 2, is of
particular importance when training robust networks. We
now examine batch normalization (BN) which, according
to (Ioffe & Szegedy, 2015), should help us in this regard.
The authors begin by acknowledging the presence of an ef-
fect known as covariate shift. Summarily, this phenomenon
occurs when the distribution of the features presented to a
model changes. In such circumstance, a model can only
learn effectively if, in addition to adjusting its parameters
due to the inherent learning process, is also able to track
the resulting changes in distribution of the features. It then
becomes clear that, if we are able to mitigate these changes,
the training becomes less difficult. In feedforward neural
networks, since information is propagated forward, param-
eter updates of previous layers affect the inputs of layers
above – this is known as interval covariate shift. BN seeks
to mitigate this problem by normalizing these inputs. In
particular, let B = {x1, ...,xm} denote a given minibatch of
size m, where each input xi ∈ R

d is a d-dimensional vector
to be standardized. At test time, the BN transform applied
to xi corresponds to

BN(xi;β,γ) = β + γ �
xi − Ê[x]√
V̂ar[x] + ε

, (9)
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Figure 6. Absolute difference in accuracy between training and validation (top) and accuracy on validation (bottom) of fully-connected
networks with 100 hidden units. Different configurations of BN (after, before, none) and dropout (0.0, 0.1) are tested.

where � denotes the elementwise product, ε is a small
positive scalar (e.g. 10−5) and Ê[x], V̂ar[x] are unbiased
estimators of the first two central moments of the inputs x.
These are estimated during training, often using EMAs with
weight 0.99, and initialized at zeros and ones respectively
(Chollet et al., 2015). This transform is parameterized by
β ∈ Rd and γ ∈ Rd, corresponding to a location shift
(mean) and scale (standard deviation) and are learned dur-
ing training. Additionally, at training time, the two central
moments are estimated using maximum likelihood based
on the samples from the current minibatch. Due to space
constraints, we are unable to provide a more detailed de-
scription of the training process (e.g. gradients) – we refer
the reader to (Ioffe & Szegedy, 2015).

In order to evaluate BN, we consider networks with 100
hidden units per hidden layer (6 and 10) and dropout proba-
bility r ∈ {0.0, 0.1} (dropout is applied after BN). We test
one approach where BN is applied before activations and
another where BN is used after activations. The latter is
motivated by the findings of (Mishkin, 2016). We com-
pare these with similar configurations without BN. These
results are shown in Figure 6 and Table 2. Surprinsingly,
we observe that, as opposed to what (Klambauer et al.,
2017) suggest, combining BN with SELU leads to better
performance. Again, we believe the authors do not test
this thoroughly and α = 10−5 on the MNIST task seems
particularly low for SGD (implicit use), which, as noted in
Section 2, biases the results. In addition, (Ioffe & Szegedy,
2015) state that BN enables higher learning rates, not lower.
Another interesting observation is that our results seem to
validate the findings of (Mishkin, 2016) in that it is prefer-
able to use BN after ReLU, but this does not necessarily
apply to ELU/SELU. In fact, Table 2 shows that it is incon-
clusive. On the other hand, it seems clear that we should
simultaneously use BN and dropout. The highest valida-

tion accuracy (86.7%) is observed for a network that, in
addition to dropout, uses BN before ELU. Consequently,
the next logical step is to test the model with r = 0.5 and
1000 hidden units, as presented in Section 2. We noted
that the previous model takes us two full days to train. In
this network, the training time roughly doubles due to the
additional computational cost of BN and Adam (as opposed
to SGD). Moreover, an unforeseen problem with the source
code of BN led us to repeat all the experiments presented
in this section and, as a result, we were unable to test this
network.

5. Convolutional networks
Unlike the previous sections, where we explored fully-
connected (standard) networks, we now investigate a differ-
ent topology that is more suitable for image recognition and,
in general, spatial structure detection. Convolutional neural
networks (CNN) extend standard networks with two types
of layers that can also be stacked to create deeper models
(LeCun et al., 2015). In convolutional layers, the hidden
units are arranged according to feature maps and, in each
map, these units are only connected to local patches of the
previous layer, known as local receptive fields. In turn, each
receptive field has a particular set of weights (kernel/filter).
The dimension of the feature map is thus determined by the
shapes of the input and the kernel, in addition to the stride
of the receptive field. Moreover, in each feature map, units
are constrained to extract the same feature and, as such, the
weights are shared across the receptive fields. This is partic-
ularly important as it allows the network not only to detect
motifs (e.g. edges) irrespective of their locations, but also
reduces the number of parameters to learn. Hence, com-
pared to a standard model without regularization, CNNs
are less prone to overfitting. Given this constraint, the filter-
ing operation can also be seen as a (discrete) convolution.
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Figure 7. Accuracy (validation) of convolutional networks with different number of feature maps (one and two convolutional layers).
Best accuracy values for CNNs with [10, 10] feature maps: ReLU (86.8%, epoch 65), ELU (86.6%, epoch 73), SELU (86.2%, epoch 52).

In terms of implementation, we can take into account the
existence of optimized matrix multiplication routines and
implement the convolution operation as such. Indeed, we
followed this approach by arranging each receptive field
into a column and we tried to generate views of the objects
whenever possible as to reduce the computational overhead.
In addition to the convolutional layer, another important
layer is maxpooling, where we combine adjacent features
by taking its maximum. Consequently, not only it enables
the detection of more course-grained motifs in the subse-
quent layers, but also allows CNNs to become more robust
to translations and distortions of the input. Since this layer
only performs downsampling, it is completely specified by
the shape of the pooling regions and the stride.

We now consider CNNs on the EMNIST task. We evalu-
ate networks of one and two convolutional layers, each
followed by a non-overlapping maxpooling layer with
2x2 regions. We use convolutional kernels of dimension
5x5 and stride 1. Each CNN has a final fully-connected
hidden layer. We test different number of feature maps:
{1, 3, 5, 7, 9, 10} for CNNs with one convolutional layer and
{[5, 10], [10, 10]} for CNNs with two. From Figure 7, we
observe that we are able to achieve better performance as
the number of filter maps increases, which is naturally ex-
plained by the ability to detect an increasing number of
different motifs (shapes) in image patches. CNNs with
1 and 3 feature maps lack the required flexibility to cor-
rectly classify the images. On the other hand, CNNs with
more than 5 begin overfitting after 10 to 40 epochs. For
CNNs with one convolutional layer, the maximum accu-
racy is observed for ReLU networks with 10 feature maps
(85.2%, epoch 11). It is surprising to note that the perfor-
mance of ReLU on CNNs seems to be marginally better
than ELU (84.9%, epoch 9). SELU seems to perform the
worst (84.4%, epoch 8). CNNs with [10, 10] feature maps
are able to achieve the best results for all activations. An
interesting, but not surprising observation is that these do
not show signs of significant overfitting. In particular, the
fully-connected hidden layer is remarkably smaller due to
the successive application of convolution (without padding)
and maxpooling. Indeed, the latter are more expressive
(more nonlinearities) than the former and there is almost a
sevenfold decrease in the number of parameters. We pre-
sume that more layers and smaller kernels are capable of
boosting performance.

6. Test results
In this section, we analyze the performance of our best
models on the test set. The choice is based on validation
accuracy and generalization capacity. We test the ELU net-
work with 1000 hidden units (6 hidden layers) and dropout
r = 0.5 using SGD (see Sections 2 and 4 for details) after
being trained for 500 epochs. Regarding CNN, we retrain
the ReLU network with [10, 10] feature maps (same ini-
tialization) and and perform early stopping based on the
previous validation results (maximum accuracy), i.e. epoch
65. The fully-connected network achieves 86.9% on the test
set (+2.9% on train, +0.8% valid.), whereas for the CNN
we observe 85.7% (+3.5% on train, +1.1% valid.). The
fully-connected network is more accurate and generalizes
better, but takes longer to train and has almost 470 times
as many parameters as the CNN. We expect the CNN to be
able to achieve better results after additional fine-tuning.

7. Conclusions
In this study, we analyzed the interplay between activa-
tion functions and architectures of different size, depth
and topology. We also considered dropout, several learn-
ing rules and batch normalization. Some experiments in
(Klambauer et al., 2017) deserve further analysis: we have
consistently achieved better results using ELU in fully-
connected networks and batch normalization seems to im-
prove the performance of all networks, including those
using SELU. Dropout seems an effective method if we aim
to build more robust systems. However, the training pro-
cedure is costlier and, as a result, advanced learning rules
become even more relevant. Adam achieves good results,
but additional tests are required. For instance, it would be
informative to compare Adam to SGD and RMSProp with
momentum. We also tested convolutional networks and
ReLU achieved marginally better results than ELU. It is
unclear if this statement can be generalized and, as such,
deserves further investigation. Our fully-connected network
with dropout performed better than our best convolutional
network, which shows that fine-tuning is an important pro-
cess and should not be neglected. We expect convolutional
networks to achieve better results and it might be worth-
while to also test smaller kernels, different strides and zero
padding. Additional interesting approaches are proposed
by (Springenberg et al., 2014) and (Huang et al., 2016).
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Layer 6 10
Activation ReLU ELU SELU ReLU ELU SELU

Adam 4.18 4.24 4.20 4.10 4.20 4.17
RMSProp 4.07 4.22 4.16 3.73 4.12 4.05
SGD 2.66 3.50 3.86 2.11 3.43 3.93

Table 1. Mean validation accuracy discounted by epoch (division) and multiplied by a factor of 100. These results correspond to
fully-connected networks using Adam (α = 0.001, β1 = 0.9, β2 = 0.999), RMSProp (α = 0.001, β2 = 0.999) and SGD (α = 0.006). Note
the difference between Adam and RMSProp/SGD in ReLU networks compared to ELU/SELU. Momentum seems particularly helpful
because ReLU has an inactive state whose gradient is zero. As previously noted, compared to SELU, ELU appears to be slightly better.

Layer 6 10
Batchnorm None Before After None Before After
Dropout 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1

ReLU 82.2% 85.1% 84.7% 85.6% 84.7% 86.2% 83.7% 83.5% 85.2% 85.2% 85.3% 85.6%
ELU 81.7% 86.2% 84.9% 86.7% 84.2% 86.3% 83.5% 85.2% 85.5% 86.0% 85.2% 86.0%
SELU 81.8% 86.0% 84.7% 86.4% 84.0% 86.4% 83.4% 85.5% 85.2% 86.0% 84.9% 85.8%

Table 2. Validation accuracy after training fully-connected neural networks with different configurations of batch normalization and
dropout for 100 epochs. It appears that batch normalization is more effective when applied after ReLU, but the best approach for ELU
and SELU networks is unclear. Dropout with r = 0.1 is particularly helpful because all networks without regularization show signs of
overfitting.
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