
MLP Coursework 1: Activation Functions

s1740192

Abstract
Deep learning is a fast-paced research field where
several models, training schemes and applica-
tions are being actively investigated. Unlike tra-
ditional machine learning systems, deep neural
networks are able to automatically learn expres-
sive representations of the data. The choice of
activation functions, number of layers and ini-
tialization schemes directly affect this capability,
and therefore its analysis is of great importance.
The purpose of this study is threefold. First, we
present several activation functions, ranging from
sigmoid to more recent developments such as Ex-
ponential Linear Units (ELU) or Scaled Expo-
nential Linear Units (SELU), and measure their
impact on a handwritten digit recognition task
for a fixed architecture. Second, we evaluate the
behavior of these activation functions in the con-
text of deeper models and, finally, we extend the
analysis to multiple initialization schemes. We
find that the new developments in both activa-
tion functions and initialization methods lead to
deeper models that are easier to train.

1. Introduction
One field that has gained a tremendous amount of attention
among machine learning researchers and practitioners alike
is that of Deep Learning, or deep neural networks (LeCun
et al., 2015). Indeed, deep neural networks seem to excel at
perception tasks and have revolutionized several disciplines,
ranging from computer vision, natural language process-
ing or time series analysis. In essence, these models are
comprised of simple nodes arranged in a network, whose
topology is often problem-specific and can be interpreted
as the prior belief of the modeller on how the data should
be perceived. For instance, feedforward neural networks
are a particular type of networks, where each node, after re-
ceiving information from a previous layer, applies an affine
transformation followed by an activation function (nonlin-
ear map) and propagates the information to the next layer.
One property of deep learning methods is that they are
able to automatically learn more abstract, and hence expres-
sive, representations of the input data at each layer, unlike
traditional machine learning systems that require careful
feature engineering in order to find a suitable representation
that can be fed to the next learning module (Goodfellow
et al., 2016). The nonlinear transformations and the depth
of a network directly affect this capability and are therefore
important design aspects.

In this work, we are interested in measuring the impact of
different activation functions on handwritten digit recog-
nition. For this purpose, in Section 2, we first present the
activation functions and, in Section 3, we analyze the per-
formance of these functions for a fixed architecture. We
expand this analysis by considering deeper models in Sec-
tion 4 and also take into account the effect of different
initialization strategies in Section 5. In particular, we assess
the performance of several feedforward neural networks
with respect to the cross entropy error and accuracy on the
Modified National Institute of Standards and Technology
(MNIST) digit classification dataset, a 10-class problem.
In this dataset, each sample is a 28 × 28 pixel grayscale
image of a handwritten digit, which has been stored as a
784 dimensional vector. There are 60, 000 examples as
training data and 10, 000 as test data. The original training
data is further split into two parts: 50, 000 and 10, 000, with
the first being used to train our models and the second as
a validation set. The reported performances correspond to
these two parts.

2. Activation functions
Traditional neural networks used to employ a sigmoid as
the nonlinear activation function. This is a real-valued
differentiable function that monotonically increases from
zero to one:

sigmoid(x) =
ex

ex + 1
=

1
1 + e−x , (1)

and whose derivative can be shown to be:

d
dx

sigmoid(x) = sigmoid(x) ·
(
1 sigmoid(x)

)
. (2)

However, neural networks using sigmoidal activations were
observed to suffer from the vanishing gradient problem due
to the saturation regions – a consequence of mapping the
extended real line onto a small output range. The vanishing
gradients, i.e. gradients of nearly zero, cause slow opti-
mization convergence, and hence learning, possibly leading
to poor local minima (Maas et al., 2013). A different ac-
tivation function, Rectified Linear Unit (ReLU), was then
shown to improve restricted Boltzmann machines (Nair &
Hinton, 2010) and its use in discriminative deep neural net-
works was advocated by (Glorot et al., 2011). The ReLU
tries to address the problem by defining a linear relationship
(identity) when the input is positive (active) and discarding
the information of the input otherwise:

relu(x) = max(0, x), (3)



MLP Coursework 1 (s1740192)

5 4 3 2 1 0 1 2 3 4
x

2

1

0

1

2

3

4

5

f(
x)

Sigmoid
ReLU
LReLU
ELU
SELU

Figure 1. Nonlinear activation function curves: sigmoid, ReLU,
LReLU (α = 0.01), ELU (α = 1) and SELU (α ' 1.6733 and
λ ' 1.0507).

d
dx

relu(x) =

0 if x ≤ 0
1 if x > 0.

(4)

Notice that the gradient of active units cannot vanish since
the output does not saturate. On the other hand, the gradient
is zero when the unit is inactive, which has been argued by
(Maas et al., 2013) as being a potential drawback during
training because a unit that does not activate initially will
remain inactive. Consequently, the authors proposed a
modification to this unit by allowing non-zero gradients
when inactive. The Leaky ReLU (LReLU) is as follows:

lrelu(x) =

αx if x ≤ 0
x if x > 0,

(5)

with the corresponding derivative being:

d
dx

lrelu(x) =

α if x ≤ 0
1 if x > 0,

(6)

where α is a small positive constant, e.g. α = 0.01.

Recently, (Clevert et al., 2015) have reiterated that the van-
ishing gradient problem can be mitigated by using the iden-
tity relationship for positive inputs and argue that it is im-
portant to have negative values when the unit is inactive.
In particular, the bias present in non-zero mean activation
functions has as an impact during learning and correcting
this bias, by pushing it towards zero, can speed up this pro-
cess. The authors further assert that LReLUs are not robust
to noise during the inactive state because there is no nega-
tive saturation. This in turn is critical because it allows the
inactive state to be uninformative, i.e. invariance/robustness
of the output for small variations of the input. The authors
propose the Exponential Linear Unit (ELU):

elu(x) =

α (ex − 1) if x ≤ 0
x if x > 0,

(7)

whose derivative is:

d
dx

elu(x) =

elu(x) + α if x ≤ 0
1 if x > 0,

(8)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Cr
os

s 
En

tr
op

y 
Lo

ss

lr=0.006 lr=0.06

10 20 30 40 50 60 70 80 90 100
Epoch

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

10 20 30 40 50 60 70 80 90 100
Epoch

(Sigmoid, train)
(Sigmoid, valid)
(ReLU, train)
(ReLU, valid)

Figure 2. Cross entropy loss and accuracy curves of neural net-
works with 2 hidden layers (100 units each) trained for 100 epochs
on MNIST data. Weights initialized with Glorot Uniform scheme.
Left: Optimal learning rate for ReLU (green). Right: Optimal
learning rate for sigmoid (blue).

where α is a positive constant that controls the negative
saturation, e.g. α = 1. In addition, (Klambauer et al., 2017)
claim that an appropriate activation function should also
have a derivative larger than one to increase the variance
for positive inputs. The Scaled Exponential Linear Unit
(SELU) has the following form:

selu(x) = λ

α (ex − 1) if x ≤ 0
x if x > 0,

(9)

d
dx

selu(x) =

selu(x) + λα if x ≤ 0
λ if x > 0,

(10)

where α and λ are positive scalars. For instance, fol-
lowing the theoretical argument presented by the authors
α ' 1.6733 and λ ' 1.0507. Figure 1 shows the curves for
all the activation functions considered in this work.

3. Experimental comparison of activation
functions

Before proceeding with the analysis of our results, we note
that all experiments in this section have been conducted
using feedforward neural networks of two hidden layers,
with 100 units per hidden layer (784/100/100/10). The
network parameters are learned via backpropagation using
Stochastic Gradient Descent (SGD) with a batch size of 50
for a total of 100 epochs (no early stopping). The learning
rates ranged from 0.001 to 0.2, for a total of 20 different
values. In particular, these rates were generated by taking
the product (1, 2, ..., 9)×(10−3, 10−2, 10−1) and trucating the
maximum value at 0.2. In addition, the weights are initial-
ized using the Glorot Uniform scheme (Glorot & Bengio,
2010), i.e. these are drawn from a Uniform distribution with
variance 2/(nin +nout), where nin and nout denote the number



MLP Coursework 1 (s1740192)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Cr

os
s 

En
tr

op
y 

Lo
ss

lr=0.001 lr=0.006 lr=0.008 lr=0.2

10 20 30 40 50 60 70 80 90 100
Epoch

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

10 20 30 40 50 60 70 80 90 100
Epoch

10 20 30 40 50 60 70 80 90 100
Epoch

10 20 30 40 50 60 70 80 90 100
Epoch

(ReLU, train)
(ReLU, valid)
(LReLU, train)
(LReLU, valid)
(ELU, train)
(ELU, valid)
(SELU, train)
(SELU, valid)

Figure 3. Cross entropy loss and accuracy curves of neural networks with 2 hidden layers (100 units each) trained for 100 epochs on
MNIST data. Weights initialized with Glorot Uniform. From left to right, we have the following learning rates (SGD): 0.001 (lowest);
0.006 (optimal for ReLU, LReLU and SELU); 0.008 (optimal for ELU); 0.2 (highest).

of incoming and outgoing connections for a particular layer
of neurons, respectively.

We begin our set of experiments by comparing the per-
formance of sigmoidal neural networks with others that
use ReLU nonlinearities. A summary of the results can
be found in Table 1, where we report the validation error
(cross entropy loss) and accuracy observed after training
the networks for 100 epochs. In order to determine the opti-
mal learning rate for each activation function, we decide to
select the point at which the validation error stops decreas-
ing. We believe this selection is justified because we are
unable to perform early stopping or any other form of reg-
ularization, but still are interested in networks that are not
overfitted. In particular, we note that the effect of overfit-
ting occurs predominantly for higher learning rates, but, if
low learning rates are to be chosen, then underfitting might
also occur. Returning to the comparison between sigmoid
and ReLU, we observe that, for the same learning rate, the
former is not as accurate as the latter and that the optimal
learning rate for ReLU neural networks is 0.006, whereas
for a sigmoidal neural network of similar architecture we
have 0.06. This tenfold increase can perhaps be explained
by the vanishing gradient problem mentioned in the previ-
ous section since the optimization updates are scaled by the
learning rates, acting as a possible countermeasure against
small gradients.

A more thorough analysis can be made by plotting the
performance curves for both activation functions at their
optimal points. Indeed, Figure 2 shows that ReLU performs
better than sigmoid since it allows a significantly faster con-
vergence. Specifically, we observe that, for a learning rate
of 0.006, the sigmoid shows signs of underfitting, whereas
the ReLU managed to converge to almost the final state
within 50 epochs. On the other hand, for 0.06, the sigmoid

takes almost all 100 epochs to find an acceptable solution,
while the ReLU is capable of reaching such state within the
first 20 epochs.

In the remainder of this section, we compare the behavior
of the other nonlinear activation functions with ReLU as
to ascertain whether the introduction of these recent vari-
ants translate into a tangible boost in performance. Before
proceeding with this analysis, we would like to point that a
careful investigation of this matter also requires the evalua-
tion of these systems under multiple restarts and on several
recognition tasks involving different levels of complexity.
However, such study is beyond the scope of this work due
to time and computational constraints. Thus, in the analysis
that follows, we must take this into account as to not draw
premature interpretations.

In order to compare the performance of LReLU, ELU and
SELU, we proceed as before: for each activation function,
we train multiple networks to determine the optimal learn-
ing rate. These results can again be found in Table 1. We
find that the optimal rates for LReLU, ELU and SELU are
0.006, 0.008 and 0.006, respectively. This is to a certain
degree reassuring as we were expecting these learning rates
to be of equal or lower order to that of ReLU. Perhaps sur-
prisingly, we also notice that the difference in performance
between these variants and ReLU is not as expressive as
to when we compared sigmoid to ReLU. In fact, it is dif-
ficult to state confidently which activation function might
perform the best without investigating this matter further.

Figure 3 shows the learning curves of these different sys-
tems for the lowest (0.001), optimal (0.006, 0.008) and
highest (0.2) rates. For the lowest learning rate, we observe
that all systems are underfitted and that ReLU and LReLU
seem to have a slight advantage over ELU and SELU, but



MLP Coursework 1 (s1740192)

0.10

0.15

0.20

0.25

0.30

0.35

Cr
os

s 
En

tr
op

y 
Lo

ss
ReLU

0 10 20 30 40 50 60 70 80 90 100
Epoch

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

LReLU

0 10 20 30 40 50 60 70 80 90 100
Epoch

ELU

0 10 20 30 40 50 60 70 80 90 100
Epoch

SELU

0 10 20 30 40 50 60 70 80 90 100
Epoch

2
3
4
5
6
7
8

Figure 4. Validation cross entropy loss and accuracy curves of deep neural networks, ranging from 2 to 8 hidden layers (100 units each),
trained for 100 epochs on the MNIST task. The learning rate (SGD) was fixed at 0.006.

it is unclear whether this trend can be extended to the gen-
eral case. On the other hand, for the highest learning rate,
all systems show signs of overfitting, reaching the lowest
validation error within the first 20 epochs. SELU seems to
be the most sensitive to high learning rates, but again it is
uncertain if this holds in general. Perhaps the most inter-
esting plots are those related to what we defined to be the
optimal learning rates. For these both, ReLU and LReLU
show signs of faster convergence, followed by SELU and
then ELU. In terms of accuracy, SELU performs the worst,
but only marginally. Unlike sigmoids, some of these differ-
ences are incredibly subtle and, consequently, we should
be cautious in our inferences. However, at this point, we
believe that it might be safe to assert that ReLU and LReLU
behave similarly as there is a close match between their
performances curves – note that (Maas et al., 2013) have
reached a similar conclusion.

4. Deep neural network experiments
First, we would like to motivate the experiments that fol-
low by building on the results from the previous section.
We observed that, among the activation functions under
analysis, sigmoids lead to the worst outcome. This is un-
surprising as it can be attributed to the vanishing gradient
problem. On the other hand, we were not able to confidently
state which activation function is the best performer. ReLU
and LReLU achieved slightly better results on the previous
section, but the difference between these and ELU/SELU
was not as expressive as the one observed between ReLU
and sigmoid. Additionally, we should note that while both
ELU and SELU have been advocated by their authors as
being suitable for deeper models, the neural networks in
the previous section were not particularly deep. Therefore,
in this section, we do not limit ourselves to the analysis of
one particular activation function. Instead, we decide to

evaluate the behavior of all these functions in the context
of deeper models. In particular, we consider networks that
range from 2 to 8 hidden layers, using 100 units per hidden
layer. As before, we use SGD with batches of size 50 for
a total of 100 epochs. We initialize the weights using the
Glorot Uniform scheme and we now fix the learning rate
at 0.006, which, in the previous section, was found to yield
good results for most activation functions.

Figure 4 shows the performance curves of these deeper
models using ReLU and variants. Moving from left to
right, perhaps the most noticeable feature is that ReLU and
LReLU networks continue to behave similarly, even for
deeper architectures. Particularly, for both functions, as the
model increases its depth, the performance curves become
noisier, indicating a greater sensitivity to updates. This
effectively means that deeper models are more difficult to
train. As we would expect, deeper models also begin to
overfit sooner because there are more free parameters. In
addition, the optimal depth for these settings seems to be
4 hidden layers, but if we were to choose this model, we
should perform early stopping somewhere between epochs
40 to 60, or apply other forms of regularization, as there are
signs of overfitting by the end of 100 epochs. In comparison
to ReLU and LReLU, another salient feature is that ELU
and SELU indeed seem more suitable for deeper models.
The performance curves are noticeably less noisy which, in
turn, means that the models are easier to train. Deeper mod-
els also appear to be able to converge faster, while taking
longer to overfit. For instance, this is clearly observable if
we consider the model with 8 hidden layers. In this case,
both ELU and SELU lead to a better solution in terms of er-
ror and accuracy, as it can be seen during the first 20 epochs.
This behavior does not occur for ReLU/LReLU, which can
perhaps be attributed to the lack of bias correction or lack
of robustness of the inactive state mentioned by (Clevert



MLP Coursework 1 (s1740192)

0.1

0.2

0.3

0.4

0.5

0.6

Cr
os

s 
En

tr
op

y 
Lo

ss
2

0 10 20 30 40 50 60 70 80 90 100
Epoch

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

4

0 10 20 30 40 50 60 70 80 90 100
Epoch

6

0 10 20 30 40 50 60 70 80 90 100
Epoch

8

0 10 20 30 40 50 60 70 80 90 100
Epoch

FanInNormal
FanInUniform
FanOutNormal
FanOutUniform
GlorotNormal
GlorotUniform
HeFanInNormal
HeFanOutNormal

Figure 5. Validation cross entropy loss and accuracy curves of deep neural networks using ReLU, ranging from 2 to 8 hidden layers (100
units each), trained for 100 epochs on the MNIST task. The learning rate (SGD) was fixed at 0.006. Different initialization schemes are
tested.

et al., 2015).

In comparison to SELU, we observe that networks using
the ELU activation function were eventually able to reach
marginally better solutions and those with 6 or more hid-
den layers seem to take longer to start overfitting. Deep
architectures using SELU show however signs of faster con-
vergence (see the first 10 to 20 epochs). For this relatively
simple task of handwritten digit classification, the archi-
tecture of 5 hidden layers seems to lead to one of the best
performances for both activation functions, but this does
not necessarily mean that we should choose this architec-
ture over the others. In fact, if we apply the Occam’s razor
principle, we note that, after convergence, the differences
in performance for most architectures do not appear to be
significant. Therefore, a good compromise between perfor-
mance and complexity is reached if we select the networks
with 3 hidden layers.

5. Experimental comparison of initializations
Unlike the previous sections, where we used the Glorot
Uniform as our sole method of weight initialization, we
now investigate the effect of different initialization strate-
gies on handwritten digit recognition. For this purpose,
we have again considered all activation functions, but we
only present the results obtained for ReLU and SELU due
to space constraints. We found, however, that ReLU and
LReLU behave similarly and that, apart from certain fluc-
tuations, many of the conclusions that will be drawn for
SELU will also hold for ELU. In addition, instead of focus-
ing on one particular architecture, we analyze the effect of
different initialization schemes for networks of increasing
depth, i.e. models that range from 2 to 8 hidden layers with
100 units each. As in the previous section, we use SGD

with a learning rate of 0.006 and batches of size 50 for a
total of 100 epochs.

Regarding weight initialization, we explore a total of 8
methodologies. In particular, we are interested in the fol-
lowing schemes: fan-in Normal and Uniform with zero
mean and variance 1/nin; fan-out Normal and Uniform with
zero mean and variance 1/nout; Glorot Normal and Uniform,
(Glorot & Bengio, 2010), where the mean is again zero and
variance 2/(nin + nout). Moreover, we consider the strategy
proposed by (He et al., 2015), i.e. the weights are drawn
from a Normal with zero mean and variance 2/nin. The the-
oretical justification for such methodology is that the ReLU
activation does not have zero mean, and therefore the anal-
ysis presented by (Glorot & Bengio, 2010) does not hold,
leading to suboptimal learning in ReLU networks. Finally,
and despite lacking a sound theoretical argument, we also
propose and investigate the fan-out case, i.e. zero-mean
Normal with a variance of 2/nout.

Figure 5 shows the performance curves of deep neural net-
works using ReLU activations under different initialization
schemes. We observe two major trends: the initialization
proposed by (He et al., 2015) seems to be among the top
performers and its usefulness becomes more apparent with
increasing network depth; the corresponding fan-out ini-
tialization is clearly the worst performer and should not
be used. The first observation is perhaps unsurprising as
it reinforces the theory and the empirical results shown by
(He et al., 2015). Regarding the second observation, it is
not completely clear why the drop in performance is so
significant. Overall, if we compare the fan-out with the cor-
responding fan-in initializations, it can be seen that, at least
for networks of lower depth, the initial convergence seems
to be faster, but these methods converge to worse local
minima. Perhaps this can be attributed to variance over-



MLP Coursework 1 (s1740192)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Cr
os

s 
En

tr
op

y 
Lo

ss
2

0 10 20 30 40 50 60 70 80 90 100
Epoch

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

4

0 10 20 30 40 50 60 70 80 90 100
Epoch

6

0 10 20 30 40 50 60 70 80 90 100
Epoch

8

0 10 20 30 40 50 60 70 80 90 100
Epoch

FanInNormal
FanInUniform
FanOutNormal
FanOutUniform
GlorotNormal
GlorotUniform
HeFanInNormal
HeFanOutNormal

Figure 6. Validation cross entropy loss and accuracy curves of deep neural networks using SELU, ranging from 2 to 8 hidden layers (100
units each), trained for 100 epochs on the MNIST task. The learning rate (SGD) was fixed at 0.006. Different initialization schemes are
tested.

estimation since, for these particular networks, in the first
hidden and output layers, we have nout � nin. The factor of
2 in what we denoted by HeFanOutNormal aggravates the
problem further, but this is only a speculative hypothesis.
In this regard, the combined nin and nout approach taken
by (Glorot & Bengio, 2010) might be interesting to test
in the future, i.e. a variance of 4/(nin + nout). In fact, de-
spite the theory not holding for ReLU, the Uniform Glorot
initialization achieved excellent results, particularly so for
networks of 2, 4 and 6 hidden layers. Therefore, it remains
to be seen whether combining this approach with the fac-
tor of 2 introduced by (He et al., 2015) might lead to a
further boost in performance for ReLU networks. On the
other hand, we believe that little can be said about Uniform
versus Normal intializations without further testing. In par-
ticular, the Uniform initializations seem to lead to slightly
better results, but we are unsure whether this trend holds
in general. Again, for a future study, and in addition to
other recognition tasks, it might be interesting to test He
initialization with a Uniform distribution.

Figure 6 shows the corresponding validation error and ac-
curacy curves for SELU networks. In comparison to ReLU,
the curves are significantly less noisy, an observation that
we had already reported in the previous section – but it is
reassuring to see that this also holds for other initializations.
Moreover, many of the comments we made regarding ReLU
can be extended to SELU. In particular, HeFanInNormal
seems to be one of the best methods, especially so for net-
works up to 6 hidden layers, and HeFanOutNormal remains
the worst, with the drop in performance being even more
noticeable for SELU networks. An interesting observation
is that, for deeper architectures (e.g. 8 hidden layers), fan-in
Uniform achieved outstanding results, better than that of
fan-in Normal – note that the latter has been recommended

by their authors. Thus, we would like to conclude this sec-
tion by reiterating that further testing should be done in
order to extract more definite conclusions.

6. Conclusions
In this work, we have studied the impact of different activa-
tion functions on handwritten digit recognition. We started
this investigation by considering feedforward neural net-
works with 2 hidden layers and then expanded the analysis
to deeper models. We have seen the effect of the gradient
vanishing problem and how it degrades the performance of
sigmoid activation functions when compared to ReLU. We
have also observed that ReLU and LReLU networks exhibit
a similar behavior and that this trend seems to hold for
deeper models, reinforcing the conclusion in (Maas et al.,
2013). In addition, it has been difficult to ascertain whether
ELU and SELU provide a boost in performance in neural
networks that are not too deep. However, for neural net-
works with multiple hidden layers, there are clear benefits
in using these activation functions. This in turn supports
the findings presented by their authors – they have assessed
the performance of ELU, (Clevert et al., 2015), and SELU,
(Klambauer et al., 2017), in the context of networks of at
least 8 layers. Our last section analyzed different initial-
ization schemes and we have been able to verify that the
initialization of (Glorot & Bengio, 2010) yields good re-
sults, but the scheme introduced by (He et al., 2015) can be
better.

Throughout the paper, we have left several questions and
pointers to future research. In particular, we believe it
would be interesting to perform some form of sensitivity
analysis and test these methods on other recognition tasks
involving different levels of complexity.



MLP Coursework 1 (s1740192)

activation sigmoid relu lrelu elu selu

validation error accuracy error accuracy error accuracy error accuracy error accuracy

lr

0.001 0.52818 0.86350 0.16530 0.95440 0.16591 0.95430 0.19779 0.94560 0.18107 0.95090
0.002 0.34114 0.90370 0.11789 0.96720 0.11848 0.96730 0.13825 0.96130 0.12696 0.96380
0.003 0.28905 0.91890 0.09951 0.97160 0.09997 0.97120 0.11253 0.96880 0.10664 0.96790
0.004 0.25800 0.92530 0.09203 0.97340 0.09240 0.97330 0.10021 0.97120 0.09832 0.97020
0.005 0.23454 0.93160 0.08909 0.97360 0.08921 0.97400 0.09347 0.97290 0.09468 0.97150
0.006 0.21562 0.93890 0.08815 0.97460 0.08789 0.97440 0.08988 0.97450 0.09322 0.97250
0.007 0.19996 0.94270 0.08879 0.97490 0.08883 0.97470 0.08833 0.97540 0.09362 0.97270
0.008 0.18674 0.94810 0.08942 0.97580 0.08991 0.97530 0.08808 0.97580 0.09482 0.97300
0.009 0.17540 0.95230 0.09130 0.97620 0.09134 0.97700 0.08865 0.97570 0.09585 0.97380
0.010 0.16559 0.95420 0.09270 0.97700 0.09263 0.97650 0.08971 0.97570 0.09698 0.97310
0.020 0.11413 0.96890 0.10418 0.97680 0.10403 0.97800 0.10286 0.97680 0.10872 0.97510
0.030 0.09678 0.97170 0.11313 0.97660 0.11251 0.97710 0.11082 0.97730 0.11456 0.97620
0.040 0.08908 0.97460 0.11448 0.97740 0.11415 0.97700 0.11519 0.97780 0.11964 0.97670
0.050 0.08578 0.97590 0.11348 0.97760 0.11355 0.97820 0.11825 0.97830 0.11757 0.97670
0.060 0.08492 0.97590 0.11336 0.97870 0.11581 0.97910 0.12057 0.97860 0.11756 0.97610
0.070 0.08519 0.97620 0.11520 0.97950 0.11318 0.97990 0.12213 0.97890 0.12149 0.97700
0.080 0.08599 0.97620 0.11764 0.97930 0.11637 0.97940 0.12258 0.97910 0.12396 0.97720
0.090 0.08710 0.97690 0.11347 0.97970 0.11743 0.97920 0.12275 0.97920 0.12234 0.97760
0.100 0.08832 0.97720 0.11653 0.97960 0.11213 0.98010 0.12292 0.97920 0.12179 0.97910
0.200 0.09801 0.97910 0.11702 0.98160 0.12036 0.97960 0.11825 0.98140 0.12140 0.97930

Table 1. Validation cross entropy loss and accuracy observed after training neural networks of 2 hidden layers with 100 units per hidden
layer for 100 epochs on the MNIST task. Each row corresponds to a different learning rate (SGD). The best validation errors per
activation function occurred for the following learning rates: sigmoid (0.060), ReLU (0.006), LReLU (0.006), ELU (0.008), SELU
(0.006). These are also the points at which the validation error starts to increase for higher learning rates.

References
Clevert, Djork-Arné, Unterthiner, Thomas, and Hochreiter,

Sepp. Fast and accurate deep network learning by expo-
nential linear units (ELUs). arXiv:1511.07289, 2015.

Glorot, Xavier and Bengio, Yoshua. Understanding the
difficulty of training deep feedforward neural networks.
In PMLR, volume 9, pp. 249–256, 2010.

Glorot, Xavier, Bordes, Antoine, and Bengio, Yoshua. Deep
sparse rectifier neural networks. In PMLR, volume 15,
pp. 315–323, 2011.

Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron.
Deep Learning. MIT Press, 2016.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification. arXiv:
1502.01852, 2015.

Klambauer, Günter, Unterthiner, Thomas, Mayr, Andreas,
and Hochreiter, Sepp. Self-Normalizing Neural Net-
works. arXiv: 1706.02515, 2017.

LeCun, Yann, Bengio, Yoshua, and Hinton, Geoffrey. Deep
learning. Nature, 521:436–444, 5 2015. doi: 10.1038/

nature14539.

Maas, Andrew L., Hannun, Awni Y., and Ng, Andrew Y.
Rectifier nonlinearities improve neural network acoustic
models. In Proc. ICML, 2013.

Nair, Vinod and Hinton, Geoffrey E. Rectified Linear Units
Improve Restricted Boltzmann Machines. In Proc. ICML,
pp. 807–814, 2010.


