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1 Likelihood-Free Inference with Informative Surrogates

1.1 Motivation

Likelihood-Free Inference (LFI), which can be framed as a conditional density estimation problem [see, e.g.,
Sections 2.4 and 2.6 1, and Appendix A], presents at least two challenges.1

A first challenge is related to the accuracy of approximations given unlimited computational power. Even under
this ideal condition, poor summary statistics lead to a large approximation error. On the other hand, sufficient
statistics yield zero approximation error. In general, the more informative are the summary statistics, the lower
is the approximation error. Automatic discovery of informative summary statistics is an important topic, but
for now it falls beyond the scope of this project.

The other challenge is conditional density estimation on a budget. At least two problems need to be solved
efficiently. One is that of identifying regions of non-negligible density and the other of correctly estimating
regions of interest, typically those of highest density. In this sense, informative models that express preferences
for these regions can lead to more sample-efficient LFI. For example, in BOLFI [2], high density regions correspond
to subspaces where a discrepancy is small. In turn, this discrepancy is assumed to be conditionally normally
distributed with a Gaussian process prior. Then, more informative GP priors, such as those proposed in BOIC

[3], are directly applicable. In fact, as I wrote in [Section 6 1], “finding the region near the minimum (small
discrepancies) appears to be the major difficulty in high-dimensional problems. For this reason, many of the
recent advances in high-dimensional Bayesian optimization, including high-dimensional regression, seem to be
directly applicable to high-dimensional likelihood-free inference.”

1.2 Research Questions

Q1: Can more informative surrogates increase the efficiency of LFI methods?

While the motivation can be traced back to BOLFI [2, 1], the significance of more informative surrogates extends
to other amortized LFI methods [e.g., 4, 5, 6]. The project focuses first on the application of GP surrogates
with informative covariance functions [3] to existing LFI methods.

Later, there is the possibility to broaden the scope of the project to include, e.g., other space transformations
[e.g., 7, Appendix C], informative priors over functions with low effective dimensionality, neural models and the
design of new or modifications to existing LFI methods [see, e.g., Appendix A].

Q2 (optional): Is it possible to design more efficient LFI methods?

1.3 KL-UCB with Informative Covariance

In KL-UCB [6], the goal is to approximate the posterior p(θ|x) ∝ p(x|θ)p(θ), where, in addition to the normalizing
constant being unknown, the (log-)likelihood ℓ(θ) = log p(x|θ) is an expensive function, only available via noisy

1This is a restatement of some challenges I identified in [Section 3 1].
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estimates.2 To this end, KL-UCBminimizes the KL divergence between an approximation q and the true posterior
p(θ|x).3 This is equivalent to the maximization of the evidence lower bound (ELBO),

q⋆ = argmax
q

Eθ∼q[ℓ(θ)]−KL(q(θ) ∥ p(θ)), (1.1)

where p(θ) is the prior. Then, a surrogate GP model approximates the log-likelihood ℓ by assuming it belongs
to a RKHS and that the observation model is additive with zero mean and sub-Gaussian. In more detail,
it replaces ℓ by an upper confidence bound (UCB) ℓun(θ) = mn(θ) + βn

√
vn(θ), where mn and vn are the

posterior predictive mean and variance given by the surrogate. The resulting objective, essentially a UCB on
ELBO, is maximized when qn+1(θ) ∝ p(θ) exp(ℓun(θ)), for which MCMC provides a sample-based approximation

qn+1(θ) ≈ 1/S
∑

i δ(θ − θn+1,i). At each step, S samples are evaluated ℓ̂n+1,i ∼ ℓ(θn+1,i), and added to the

training set Dn+1 = Dn ∪ {(θn+1,i, ℓ̂n+1,i)}i≤S . The final posterior approximation uses the posterior predictive
mean as log-likelihood.

Limitations. Since KL-UCB uses a standard GP model and UCB, it has similar limitations as those found
in standard BO with UCB/LCB. For instance, regret shows exponential growth with dimensionality [see, e.g.,
Section 6.2 and Appendix D 6]. There are also limitations when it comes to the estimation of βn and theoretical
guarantees. It assumes that 1) a concentration bound holds with high probability, 2) ℓ belongs to a known
RKHS, 3) an upper bound on the RKHS norm is known. Beyond the toy problem with known RKHS [Section
7.1 6], βn = 3 is used, and theoretical results no longer hold. The code by Oliveira et al. [6] only supports GP
surrogates with fixed parameters.

Figure 1.1. Cart-pole posterior approximations. The reference posterior is obtained by ABC Rejection [Figure
4 6]. Other posteriors are estimated via KL-UCB with the same seed, but different GP surrogates. The posterior
approximations on the bottom row use log-likelihood surrogates with informative covariances (fixed parameters)
[3]. Even in low-dimensional problems, informative surrogates appear to be useful.

2Unlike some previous works on LFI, direct access to noisy estimates of the log-likelihood is assumed. This simplifies the
methodology because there is no longer the need to address problems typically found in Approximate Bayesian Computation
(ABC), i.e., on how to approximate the likelihood function by simulations (simulated data). For instance, there is no need to
specify or estimate summary statistics, a discrepancy function and a tolerance.

3It differs from objectives in Appendix A by reversing KL.
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1.4 Other Methods

In addition to KL-UCB and BOLFI, there are other LFI methods that use GP surrogates. For instance, in Varia-
tional Bayesian Monte Carlo (VBMC) [5], posterior approximations are found by maximizing a lower confidence
bound (LCB) on ELBO,

hVBMC(q|Dn) = Eq[mn]−KL(q ∥ p)− βσn(q), with σ2
n(q) =

∫∫
Cn(θ,θ

′)q(θ)q(θ′)dθdθ′, (1.2)

fixed β and posterior covariance Cn. Naturally, the choice of covariance function C influences q and acquisitions,
chosen according to θ⋆ = argmaxσ2

n(θ)qn+1(θ) exp(mn(θ)). Another method is (Ellipsoidal) Robust Optimiza-
tion Monte Carlo [ROMC 4, Algorithm 3]. Here, informative surrogates may be particularly useful because the
method must solve many different but related BO problems, i.e., information from one problem can accelerate
optimization of related problems by transfer learning.
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A LFI and Density Estimation

In Likelihood-Free Inference (LFI), we have access to a simulator x ∼ f(· | θ), but cannot directly evaluate the
likelihood function f(xo | θ), where xo is the observed data. One approach to solving this problem is to assume
we have a flexible density estimator qϕ parametrized by ϕ, where ϕ may be the output and parameters of a
neural network. We then try to minimize a divergence between the joint density p(θ,x) = f(x | θ)p(θ) and our
approximation qϕ(θ,x). Note that we cannot evaluate p(θ,x), but if we choose to minimize the (forward) KL
divergence, we can write

DKL(p || qϕ) = Ep(θ,x)

[
log

p(θ,x)

qϕ(θ,x)

]
(A.1)

= −Ep(θ,x) [log qϕ(θ,x)] + C, (A.2)

where C is a constant that does not depend on ϕ. Then, we can define our loss as the first term in Equation
(A.2) and use a Monte Carlo approximation,

L(ϕ) = −Ep(θ,x) [log qϕ(θ,x)] (A.3)

≈ − 1

N

N∑
i=1

log qϕ(θ
(i),x(i)), θ(i) ∼ p(θ), x(i) ∼ f(· | θ(i)). (A.4)

Minimization of the loss in Equation (A.4) amounts to maximum likelihood estimation, allowing ϕ to be learned.

The likelihood can be approximated as f̂(xo | θ) = qϕ⋆(θ,xo)/p(θ), with ϕ⋆ denoting the learned parameters.

A.1 Direct Posterior Estimation

If the interest lies in the posterior p(θ | xo), it is possible to estimate it directly using qϕ(θ,x) = qϕ(θ | x)q(x).
In this case, the loss becomes

L(ϕ) = −Ef(x|θ)p(θ) [log qϕ(θ | x)] (A.5)

≈ − 1

N

N∑
i=1

log qϕ(θ
(i) | x(i)), θ(i) ∼ p(θ), x(i) ∼ f(· | θ(i)). (A.6)

Note that the KL divergence is only 0 when f(x | θ)p(θ) = qϕ(θ | x)q(x) which, in turn, implies that
q(x) =

∫
Θ
f(x | θ)p(θ)dθ. It is also possible to use importance sampling, in which case the objective is

L(ϕ) = −Ef(x|θ)q(θ)

[
p(θ)

q(θ)
log qϕ(θ | x)

]
(A.7)

≈ − 1

N

N∑
i=1

p(θ(i))

q(θ(i))
log qϕ(θ

(i) | x(i)), θ(i) ∼ q(θ), x(i) ∼ f(· | θ(i)). (A.8)

A.1.1 Some Extensions4

By adopting an adaptive sampling strategy, the proposal can be set as q(k)(θ) = q(k−1)(θ | xo), with q(0)(θ) =
p(θ). Alternatively, one may sample from q(θ), but not correct the bias with importance weights during training.
The reason is that these weights increase the variance of the ϕ updates, leading to potential problems such as
slow inference [8]. By not correcting the introduced bias, the learned (proposal) posterior density is

q̃ϕ(θ | x) = f(x | θ)q(θ)∫
Θ
f(x | θ)q(θ)dθ

. (A.9)

It is then possible to adjust this proposal posterior in a post-hoc fashion to obtain the correct posterior density.
In this case, q(x) =

∫
Θ
f(x | θ)q(θ)dθ, and we have

qϕ(θ | x) = q̃ϕ(θ | x)p(θ)
q(θ)

q(x)

p(x)
. (A.10)

4This section is based on a technical report I wrote in 2019 that describes the method by Greenberg et al. [8]. It may be worth
revisiting in the future.
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The problem with this approach is that it is only possible to obtain a closed-form expression under a restricted
choice of density estimators and priors. In a more general setting, it is necessary to estimate the partition
function,

Zϕ(x) =
p(x)

q(x)
=

∫
Θ

q̃ϕ(θ | x)p(θ)
q(θ)

dθ. (A.11)

Following Greenberg et al. [8], the proposal posterior density during training can be given by

q̃ϕ(θ | x) = qϕ(θ | x)q(θ)
p(θ)

/
Z̃ϕ(x) , with Z̃ϕ(x) =

∫
Θ

qϕ(θ | x)q(θ)
p(θ)

dθ, (A.12)

where we also have that Z̃ϕ(x) = 1/Zϕ(x). Then, an empirical density can be used as proposal,

q(θ | Θ(k)) =
1

N

N∑
i=1

δ(θ − θ(k,i)), (A.13)

where δ is the Dirac delta function and {θ(k,i)}Ni=1 = Θ(k) ⊂ Θ. The partition function Z̃ϕ(x) at each round k
can be computed as

Z̃
(k)
ϕ (x) =

∫
Θ

1

N

N∑
i=1

qϕ(θ | x)δ(θ − θ(k,i))

p(θ)
dθ (A.14)

=
1

N

N∑
i=1

qϕ(θ
(k,i) | x)

p(θ(k,i))
, θ(k,i) ∈ Θ(k), (A.15)

and the proposal posterior at round k is given by

q̃
(k)
ϕ (θ | x) = qϕ(θ | x)

p(θ)

/
N∑
i=1

qϕ(θ
(k,i) | x)

p(θ(k,i))
, θ, θ(k,i) ∈ Θ(k). (A.16)

While q̃
(k)
ϕ (θ | x) follows a categorical distribution over Θ(k), the bias-free posterior estimate qϕ(θ

(k,i) | x) does
not. In addition, ∀θ ∈ supp(q(θ | Θ(k))) = Θ(k) and DKL = 0, we know that

q̃ϕ⋆(θ | x)q(x) = f(x | θ)q(θ) ⇐⇒ q̃ϕ⋆(θ | x) = f(x | θ)q(θ)
q(x)

(A.17)

=⇒ qϕ⋆(θ | x)q(θ)
p(θ)

∝ f(x | θ)q(θ) (A.18)

=⇒ qϕ⋆(θ | x) ∝ p(θ | x), (A.19)

which means we find an unnormalized estimate of the true posterior by plugging xo. As a result, we cannot
directly evaluate the density, but can sample from qϕ⋆(θ | xo). Finally, in order to draw the sets Θ(k), the
authors consider using a density that can be interpreted as a mixture of all previous (normalized) posterior
density estimates,

Θ(k) = {θ(k,i)}Ni=1
iid∼ g(k)(θ | xo) =

1

k

k−1∑
j=0

q(j)n (θ | xo), with q(0)n (θ | xo) = p(θ). (A.20)
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B BO for LFI

In [BOLFI 2, Section 2.6 1], the discrepancy between generated and observed data, ∆(θ) = d(sθ, sobs), is
assumed to be conditionally normally distributed, ∆|D ∼ GP(mπ, Cπ +σ2

nδ) with posterior mean mπ, posterior
covariance Cπ (of the latent process) and noise variance σ2

n. For a uniform kernel with bandwidth ε, the
likelihood surrogate is computed as

fBOLFI(sobs | θ) | D = P(∆(θ) ≤ ε | D) (B.1)

= FN

(
ε−mπ(θ)√
Cπ(θ,θ) + σ2

n

)
, (B.2)

where FN is the standard Normal cumulative distribution function.

BOLFI (Original, S+QM, LCB-ELFI) BOLFI (I+X0, LCB-ELFI)
Ground Truth (Discrepancy)
Initial Observations
Acquisitions
Mean
Confidence (2 SD)
BOLFI Likelihood (Scaled)

Figure B.1. In [BOLFI 2], the GP prior is characterized by an axis-aligned quadratic mean function and a
stationary covariance function (S+QM, left). However, as in the example from [Figure 1 3], this prior leads
again to an overconfident surrogate that is unable to capture the ground truth, specifically the region of small
discrepancies. The region of high likelihood values does not match the region of small discrepancies, as given
by the ground truth. This example reveals that the choice of GP prior is important for both optimization
and (likelihood-free) inference. In fact, efficient exploration of modes for inference hinges on their efficient
identification, i.e., optimization.
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C Informative Cylindrical Covariance

Figure C.1. Cylindrical covariance function [7] with spatially-varying prior/signal variance. The anchor is
represented by the red dot.
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